Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 15(7)2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37505740

RESUMO

Zearalenone (ZEA) and deoxynivalenol (DON) are widely found in various feeds, which harms livestock's reproductive health. Both mitochondria and endoplasmic reticulum (ER) can regulate cell apoptosis. This study aimed to explore the regulatory mechanism of endoplasmic reticulum stress (ERS) on ZEA- combined with DON-induced mitochondrial pathway apoptosis in piglet Sertoli cells (SCs). The results showed that ZEA + DON damaged the ultrastructure of the cells, induced apoptosis, decreased mitochondrial membrane potential, promoted the expression of cytochrome c (CytC), and decreased the cell survival rate. Furthermore, ZEA + DON increased the relative mRNA and protein expression of Bid, Caspase-3, Drp1, and P53, while that of Bcl-2 and Mfn2 declined. ZEA + DON was added after pretreatment with 4-phenylbutyric acid (4-PBA). The results showed that 4-PBA could alleviate the toxicity of ZEA + DON toward SCs. Compared with the ZEA + DON group, 4-PBA improved the cell survival rate, decreased the apoptosis rate, inhibited CytC expression, and increased mitochondrial membrane potential, and the damage to the cell ultrastructure was alleviated. Moreover, after pretreatment with 4-PBA, the relative mRNA and protein expression of Bid, Caspase-3, Drp1, and P53 were downregulated, while the relative mRNA and protein expression of Bcl-2 and Mfn2 were upregulated. It can be concluded that ERS plays an important part in the apoptosis of SCs co-infected with ZEA-DON through the mitochondrial apoptosis pathway, and intervention in this process can provide a new way to alleviate the reproductive toxicity of mycotoxins.


Assuntos
Zearalenona , Masculino , Animais , Suínos , Zearalenona/toxicidade , Caspase 3/genética , Células de Sertoli , Proteína Supressora de Tumor p53/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Apoptose , Estresse do Retículo Endoplasmático , Mitocôndrias , RNA Mensageiro
2.
Microb Pathog ; 179: 106110, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37060967

RESUMO

Cystic echinococcosis (CE) is a zoonotic parasitic disease caused by the metacestode larva of Echinococcus granulosus. In this study, two-dimensional gel electrophoresis (2-DE) coupled with immunoblot analysis revealed that E. granulosus severin and 14-3-3zeta proteins (named EgSeverin and Eg14-3-3zeta, respectively) might be two potential biomarkers for serological diagnosis of echinococcosis. The recombinant EgSeverin (rEgSeverin, 45 kDa) and Eg14-3-3zeta (rEg14-3-3zeta, 35 kDa) were administered subcutaneously to BALB/c mice to obtain polyclonal antibodies for immunofluorescence analyses (IFAs). And IFAs showed that both proteins were located on the surface of protoscoleces (PSCs). Western blotting showed that both proteins could react with sera from E. granulosus-infected sheep, dog, and mice. Indirect ELISAs (rEgSeverin- and rEg14-3-3zeta-iELISA) were developed, respectively, with sensitivities and specificities ranging from 83.33% to 100% and a coefficient of variation (CV %) of less than 10%. The rEgSeverin-iELISA showed cross-reaction with both E. granulosus and E. multilocularis, while the rEg14-3-3zeta-iELISA showed no cross-reaction with other sera except for the E. granulosus-infected ones. The field sheep sera from Xinjiang and Qinghai were analyzed using rEgSeverin-iELISA, rEg14-3-3zeta-iELISA, and a commercial kit respectively, and no significant differences were found among the three methods (p > 0.05). However, the CE positive rates in sheep sera from Qinghai were significantly higher than those from Xinjiang (p < 0.01). Overall, the results suggest that EgSeverin and Eg14-3-3zeta could be promising diagnostic antigens for E. granulosus infection.


Assuntos
Equinococose , Echinococcus granulosus , Cães , Animais , Ovinos , Camundongos , Echinococcus granulosus/genética , Proteínas 14-3-3/metabolismo , Equinococose/diagnóstico , Equinococose/veterinária , Western Blotting , Ensaio de Imunoadsorção Enzimática/métodos , Zoonoses , Anticorpos Anti-Helmínticos
3.
Ecotoxicol Environ Saf ; 254: 114710, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36950988

RESUMO

Zearalenone (ZEA) is an estrogen-like mycotoxin, which mainly led to reproductive toxicity. The study aimed to investigate the molecular mechanism of ZEA-induced dysfunction of mitochondria-associated endoplasmic reticulum membranes (MAM) in piglet Sertoli cells (SCs) via the endoplasmic reticulum stress (ERS) pathway. In this study, SCs were used as a research object that was exposed to ZEA, and ERS inhibitor 4-Phenylbutyrate acid (4-PBA) was used as a reference. The results showed that ZEA damaged cell viability and increased Ca2+ levels; damaged the structure of MAM; up-regulated the relative mRNA and protein expression of glucose-regulated protein 75 (Grp75) and mitochondrial Rho-GTPase 1 (Miro1), while inositol 1,4,5-trisphosphate receptor (IP3R), voltage-dependent anion channel 1 (VDAC1), mitofusin2 (Mfn2) and phosphofurin acidic cluster protein 2 (PACS2) were down-regulated. After a 3 h 4-PBA-pretreatment, ZEA was added for mixed culture. The results of 4-PBA pretreatment showed that inhibition of ERS reduced the cytotoxicity of ZEA against piglet SCs. Compared with the ZEA group, inhibition of ERS increased cell viability and decreased Ca2+ levels; restored the structural damage of MAM; down-regulated the relative mRNA and protein expression of Grp75 and Miro1; and up-regulated the relative mRNA and protein expression of IP3R, VDAC1, Mfn2, and PACS2. In conclusion, ZEA can induce MAM dysfunction in piglet SCs via the ERS pathway, whereas ER can regulate mitochondria through MAM.


Assuntos
Zearalenona , Masculino , Animais , Suínos , Zearalenona/toxicidade , Células de Sertoli/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse do Retículo Endoplasmático
4.
Microb Pathog ; 175: 105954, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36574865

RESUMO

BACKGROUND: Babesiosis is an emerging zoonosis worldwide that is caused by tick-borne apicomplexans, Babesia spp., which threatens the health of domesticated and wild mammals and even humans. Although it has done serious harm to animal husbandry and public health, the study of Babesia is still progressing slowly. Until now, no effective anti-Babesia vaccines have been available, and administration of combined drugs tends to produce side effects. Therefore, non-targeted metabolomics was employed in the present study to examine the temporal dynamic changes in the metabolic profile of the infected erythrocytes. The goal was to obtain new insight into pathogenesis of Babesia and to explore vaccine candidates or novel drug targets. METHODS: C57BL/6 mice were infected with B. microti and erythrocytes at different time points (0, 3, 6 , 9, 12, and 22-days post-infection) were subjected to parasitemia surveillance and then metabolomics analysis using liquid chromatography-mass spectrometry (LC-MS). Multivariate statistical analyses were performed to clearly separate and identify dysregulated metabolites in Babesia-infected mice. The analyses included principal components analysis (PCA) and orthogonal partial least squares-discrimination analysis (OPLS-DA). The time-series trends of the impacted molecules were analyzed using the R package Mfuzz and the fuzzy clustering principle. The temporal profiling of amino acids, lipids, and nucleotides in blood cells infected with B. microti were also investigated. RESULTS: B. microti infection resulted in a fast increase of parasitemia and serious alteration of the mouse metabolites. Through LC-MS metabolomics analysis, 10,289 substance peaks were detected and annotated to 3,705 components during the analysis period. There were 1,166 dysregulated metabolites, which were classified into 8 clusters according to the temporal trends. Consistent with the trend of parasitemia, the numbers of differential metabolites reached a peak of 525 at 6-days post-infection (dpi). Moreover, the central carbon metabolism in cancer demonstrated the most serious change during the infection process except for that observed at 6 dpi. Sabotage occurred in components involved in the TCA cycle, amino acids, lipids, and nucleotide metabolism. CONCLUSION: Our findings revealed a great alteration in the metabolites of Babesia-infected mice and shed new light on the pathogenesis of B. microti at the metabolic level. The results might lead to novel information about the mechanisms of pathopoiesis, babesisosis, and anti-parasite drug/vaccine development in the future.


Assuntos
Babesia microti , Humanos , Animais , Camundongos , Parasitemia , Camundongos Endogâmicos C57BL , Eritrócitos/parasitologia , Lipídeos , Mamíferos
5.
Toxins (Basel) ; 14(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36356008

RESUMO

Zearalenone (ZEA) is an estrogen-like mycotoxin characterized mainly by reproductive toxicity, to which pigs are particularly sensitive. The aim of this study was to investigate the molecular mechanism of ZEA-induced apoptosis in porcine endometrial stromal cells (ESCs) by activating the JNK signaling pathway through endoplasmic reticulum stress (ERS). In this study, ESCs were exposed to ZEA, with the ERS inhibitor sodium 4-Phenylbutyrate (4-PBA) as a reference. The results showed that ZEA could damage cell structures, induce endoplasmic reticulum swelling and fragmentation, and decreased the ratio of live cells to dead cells significantly. In addition, ZEA could increase reactive oxygen species and Ca2+ levels; upregulate the expression of GRP78, CHOP, PERK, ASK1 and JNK; activate JNK phosphorylation and its high expression in the nucleus; upregulate the expression Caspase 3 and Caspase 9; and increase the Bax/Bcl-2 ratio, resulting in increased apoptosis. After 3 h of 4-PBA-pretreatment, ZEA was added for mixed culture, which showed that the inhibition of ERS could reduce the cytotoxicity of ZEA toward ESCs. Compared with the ZEA group, ERS inhibition increased cell viability; downregulated the expression of GRP78, CHOP, PERK, ASK1 and JNK; and decreased the nuclear level of p-JNK. The Bax/Bcl-2 ratio and the expression of Caspase 3 and Caspase 9 were downregulated, significantly alleviating apoptosis. These results demonstrate that ZEA can alter the morphology of ESCs, destroy their ultrastructure, and activate the JNK signaling via the ERS pathway, leading to apoptosis.


Assuntos
Estresse do Retículo Endoplasmático , Zearalenona , Suínos , Animais , Zearalenona/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína X Associada a bcl-2/metabolismo , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células Estromais/metabolismo
6.
Front Pharmacol ; 13: 889181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694271

RESUMO

Purpose: This study aimed to investigate the relationship between gut microbiota (GM) and serum metabolism using antineoplastic Fufangchangtai (FFCT) as the model prescription in the treatment of colorectal cancer (CRC). Methods: Tumor-bearing mice and normal mice were administered different doses of FFCT. The tumor volume of tumor-bearing mice was observed. The levels of CD4+ and CD8+ T cells in the blood, spleen, and tumor of mice were determined using a flow cytometer. The bacterial microbiota in stool samples from mice and the serum metabolomics of FFCT-treated mice and fecal microbiota transplantation mice were detected using 16s RNA sequencing and liquid chromatography-mass spectrometry (LC/MS), respectively. Results: The tumor volume of mice showed no significant decrease after FFCT intervention. The levels of CD4+ and CD8+T lymphocytes showed a significant increase under the intervention of FFCT. GM of colorectal tumor-bearing mice and healthy mice were determined, and the diversity and abundance of Firmicutes, Deferribacteres, Bacteroidetes, and Proteobacteria were significantly different between the two groups. Furthermore, we found that the levels of matrine, isogingerenone B, and armillaripin were significantly decreased in tumor-bearing mice after FFCT intervention, indicating that the tumor-induced dysbiosis of gut bacteria may affect the absorption and metabolism of FFCT. Under the intervention of FFCT, serum metabolism of mice transplanted with feces from CRC patients showed less metabolites related to FFCT than that from healthy people, indicating that GM could be a single factor affecting the metabolism of FFCT. Furthermore, we found that different doses of FFCT-treated mice had higher abundance of Roseburia, Turicibacter, and Flexispira than that in the non-intervention control group. Firmicutes and Bacteroidetes in FFCT-treated groups showed a similar trend compared to the healthy group, indicating that FFCT might correct the intestinal microenvironment by modulating gut microbiota in colorectal tumor-bearing mice. Conclusion: The dysbiosis of GM in tumor-bearing mice reduced the serum metabolites related to FFCT, and FFCT could correct the disordered GM of colorectal tumor-bearing mice to exert efficacy.

7.
Ecotoxicol Environ Saf ; 225: 112737, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34482067

RESUMO

Zearalenone (ZEA) has an estrogenic effect and often causes reproductive damage. Pigs are particularly sensitive to it. Lycopene (LYC) is a type of fat-soluble natural carotenoid that has antioxidant, anti-inflammatory, anti-cancer, anti-cardiovascular and detoxifying effects. In this study, piglet sertoli cells (SCs) were used as research objects to investigate the mechanism of ZEA induced damage to piglet SCs and to evaluate the protective effect of LYC on ZEA induced toxic damage to piglet SCs. The results showed that ZEA damaged the cell structure and inhibited the expression of nuclear factor erythroid-2 related factor 2 (Nrf2) in the nucleus, which down-regulated the relative mRNA expression of heme oxygenase 1 (HO-1) and glutathione peroxidase 1 (GPX1) and decreased the activity of HO-1, glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD), resulting in an increase in malondialdehyde (MDA) and reactive oxygen species (ROS) content. ZEA downregulated the relative mRNA and protein expression of bcl-2 in piglet SCs, promoted cell apoptosis, and upregulated the relative mRNA and protein expression of LC3, beclin-1, and bax. After 3 h LYC-pretreatment, ZEA was added for mixed culture. The results of pretreatment with LYC showed that LYC could alleviate the cytotoxicity of ZEA to porlets SCs. Compared with ZEA group, improved the cell survival rate, promoted the expression of Nrf2 in the nucleus, upregulated the relative mRNA expression of HO-1 and GPX1, increased the activity of antioxidant enzymes, and reduced the levels of MDA and ROS. Moreover, after pretreatment with LYC, the mRNA expression of bcl-2 was upregulated, the apoptosis rate was decreased, the relative mRNA and protein expressions of LC3, beclin-1 and bax were downregulated, and autophagy was alleviated. In conclusion, LYC alleviated the oxidative damage of SCs caused by ZEA by promoting the expression of Nrf2 pathway and decreased autophagy and apoptosis.


Assuntos
Fator 2 Relacionado a NF-E2 , Zearalenona , Animais , Licopeno , Masculino , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Células de Sertoli/metabolismo , Transdução de Sinais , Suínos , Zearalenona/toxicidade
8.
Environ Sci Pollut Res Int ; 28(42): 60276-60289, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34156614

RESUMO

Zearalenone (ZEA) and Deoxynivalenol (DON) are two mycotoxins highly detected in agricultural products and feed. Both mycotoxins produce reproductive toxicity and pose a serious threat to human and animal health, among which pigs are the most sensitive animals. Sertoli cells (SCs) play an important role in spermatogenesis; however, the combined toxicity of ZEA and DON and the screening of effective protective agents remains to be determined. By studying the effects of N-acetylcysteine (NAC) on the cells exposed to 20 µM of ZEA and 0.6 µM of DON, we explored the protective mechanism of NAC (4 mM) on the cytotoxic injury of piglets SCs induced by both mycotoxins. The results showed that the combination of ZEA and DON destroy organelles and SCs structures, NAC significantly alleviates the damage caused by ZEA and DON. NAC also significantly increased the expression and distribution of zonula occludens 1 (ZO-1), decreased the relative mRNA and protein expression levels of Bax, Bid, caspase-3, and caspase-9, and increased Bcl-2 expression level and inhibited the decrease of mitochondrial membrane potential. Further, NAC also eases the cell cycle arrest and oxidative stress caused by ZEA and DON. In summary, our results show that NAC could alleviate SCs injury via reducing the oxidative damage and apoptosis caused by ZEA and DON.


Assuntos
Tricotecenos , Zearalenona , Acetilcisteína/farmacologia , Animais , Masculino , Células de Sertoli , Suínos , Tricotecenos/toxicidade , Zearalenona/toxicidade
9.
Toxins (Basel) ; 13(2)2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498252

RESUMO

Deoxynivalenol (DON) is a common trichothecene mycotoxin found worldwide. DON has broad toxicity towards animals and humans. However, the mechanism of DON-induced neurotoxicity in vitro has not been fully understood. This study investigated the hypothesis that DON toxicity in neurons occurs via the mitochondrial apoptotic pathway. Using piglet hippocampal nerve cells (PHNCs), we evaluated the effects of different concentrations of DON on typical indicators of apoptosis. The obtained results demonstrated that DON treatment inhibited PHNC proliferation and led to morphological, biochemical, and transcriptional changes consistent with apoptosis, including decreased mitochondrial membrane potential, mitochondrial release of cytochrome C (CYCS) and apoptosis inducing factor (AIF), and increased abundance of active cleaved-caspase-9 and cleaved-caspase-3. Increasing concentrations of DON led to decreased B-cell lymphoma-2 (Bcl-2) expression and increased expression of BCL2-associated X (Bax) and B-cell lymphoma-2 homology 3 interacting domain death agonist (Bid), which in turn increased transcriptional activity of the transcription factors AIF and P53 (a tumor suppressor gene, promotes apoptosis). The addition of a caspase-8 inhibitor abrogated these effects. These results reveal that DON induces apoptosis in PHNCs via the mitochondrial apoptosis pathway, and caspase-8 is shown to play an important role during apoptosis regulation.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Hipocampo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Tricotecenos/toxicidade , Animais , Animais Recém-Nascidos , Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Hipocampo/enzimologia , Hipocampo/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Transdução de Sinais , Sus scrofa , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
10.
Front Immunol ; 12: 784683, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095858

RESUMO

Cryptosporidium parvum infection is very common in infants, immunocompromised patients, or in young ruminants, and chitosan supplementation exhibits beneficial effects against the infection caused by C. parvum. This study investigated whether chitosan supplementation modulates the gut microbiota and mediates the TLR4/STAT1 signaling pathways and related cytokines to attenuate C. parvum infection in immunosuppressed mice. Immunosuppressed C57BL/6 mice were divided into five treatment groups. The unchallenged mice received a basal diet (control), and three groups of mice challenged with 1 × 106 C. parvum received a basal diet, a diet supplemented with 50 mg/kg/day paromomycin, and 1 mg/kg/day chitosan, and unchallenged mice treated with 1 mg/kg/day chitosan. Chitosan supplementation regulated serum biochemical indices and significantly (p < 0.01) reduced C. parvum oocyst excretion in infected mice treated with chitosan compared with the infected mice that received no treatment. Chitosan-fed infected mice showed significantly (p < 0.01) decreased mRNA expression levels of interferon-gamma (IFN-γ) and tumor necrosis factor-α (TNF-α) compared to infected mice that received no treatment. Chitosan significantly inhibited TLR4 and upregulated STAT1 protein expression (p < 0.01) in C. parvum-infected mice. 16S rRNA sequencing analysis revealed that chitosan supplementation increased the relative abundance of Bacteroidetes/Bacteroides, while that of Proteobacteria, Tenericutes, Defferribacteres, and Firmicutes decreased (p < 0.05). Overall, the findings revealed that chitosan supplementation can ameliorate C. parvum infection by remodeling the composition of the gut microbiota of mice, leading to mediated STAT1/TLR4 up- and downregulation and decreased production of IFN-γ and TNF-α, and these changes resulted in better resolution and control of C. parvum infection.


Assuntos
Quitosana/farmacologia , Criptosporidiose , Microbioma Gastrointestinal , Fator de Transcrição STAT1/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Criptosporidiose/imunologia , Criptosporidiose/metabolismo , Cryptosporidium parvum , Suplementos Nutricionais , Hospedeiro Imunocomprometido , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
11.
Virus Res ; 292: 198256, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33285172

RESUMO

The SD12-F120 is a live-attenuated genotype I strain of Japanese encephalitis virus (JEV) and was obtained by serial passage of wild-type strain SD12 on BHK-21 cells combined with multiple plaque purification and virulence selection in mice. The large scale production and vast clinical trials always demand ideal safety and efficacy profile of live-attenuated vaccines. In the present study, SD12-F120VC has undergone serial passaging of P1-P30 in WHO qualified Vero cells to assess the potential effect of adaptation to growth on Vero cells. The series of experiments showed that vaccine SD12-F120VC (Vero cell adapted) variants have consistently increased in peak virus titer compared to early passages and have good adaptation to growth in Vero cells. The animal experiments showed that Vero cell adapted SD12-F120VC variants have attenuation phenotype in suckling mice and the plaque morphology for all SD12-F120VC variants was small. Vaccination of mice with SD12-F120VC vaccine produced complete protection for homologous SD12 genotype I strain, but failed to give the complete protection of vaccinated mice against the challenge of heterologous N28 genotype III strain. In response to immunization of SD12-F120VC in mice, the neutralizing antibodies titer against homologous SD12-F120VC and SD12 (GI) was higher than heterologous N28 (GIII) strain. The prM protein has 6 amino acid substitutions, of which 5 amino acid changes were confined at the start of the pr domain in the ∼40 amino acids, and some mutations in the pr domain of prM might contribute to Vero cell adaptation. Our findings in this study are important for validation, evaluation and quality control study of live attenuated flaviviruses vaccines and show that Vero cells are a suitable substrate for the production of a safe and stable live-attenuated JEV vaccine.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/virologia , Vacinas Atenuadas/genética , Proteínas Estruturais Virais/genética , Vacinas Virais/genética , Adaptação Biológica , Animais , Anticorpos Neutralizantes/imunologia , Chlorocebus aethiops , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/imunologia , Encefalite Japonesa/imunologia , Encefalite Japonesa/prevenção & controle , Feminino , Genótipo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Inoculações Seriadas , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Células Vero , Proteínas Estruturais Virais/administração & dosagem , Proteínas Estruturais Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
12.
BMC Vet Res ; 16(1): 234, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641048

RESUMO

BACKGROUND: Tea polyphenols (TPs) attenuate obesity related liver inflammation; however, the anti-obesity effects and anti-inflammatory mechanisms are not clearly understood. This study aimed to determine whether the anti-obesity and anti-inflammatory TPs mechanisms associated with cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression levels, and obesity-related gene response in dogs. RESULTS: Dogs fed TPs displayed significantly decreased (p < 0.01) mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1ß), and interleukin-6 (IL-6) compared to dogs that consumed high-fat diet (HFD) alone. TPs significantly (p < 0.01) inhibited COX-2 and iNOS expression level, and decreased liver fat content and degeneration. CONCLUSION: These results suggested that TPs act as a therapeutic agent for obesity, liver inflammation, and fat degeneration via COX-2 and iNOS inhibition, with TNF-α, IL-1ß, and IL-6 involvement.


Assuntos
Camellia sinensis/química , Ciclo-Oxigenase 2/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/genética , Obesidade/veterinária , Polifenóis/farmacologia , Animais , Anti-Inflamatórios , Doenças do Cão/tratamento farmacológico , Cães , Inflamação/veterinária , Obesidade/tratamento farmacológico
13.
Toxicol In Vitro ; 66: 104837, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32229166

RESUMO

Deoxynivalenol (DON), a type B trichothecene mycotoxin mainly affects the health status of pigs and reduced their growth. This study aimed to determine the effects of PI3K/Akt/mTOR pathway on DON-induced autophagy of piglet hippocampal nerve cells (PHNCs), and the relationship between autophagy and apoptosis. The effects of DON on autophagy of PHNCs were examined by cell morphology, cell viability, apoptosis rate, electron microscopy, transient transfection of GFP-LC3 plasmid, immunofluorescence and expression of autophagy-related genes and proteins. The relationship between autophagy and cell apoptosis was analyzed by western blotting, CCK-8 and flow cytometry. The results indicated that, DON inhibited the proliferation of PHNCs and significantly changed cell morphology, and induced apoptosis and autophagy. The expression levels of LC3 protein and gene increased, while the expression levels of PI3K/Akt/mTOR pathway-related genes and proteins decreased, when the concentration of DON increased. Activation of autophagy significantly increased cell viability, reduced apoptosis rate, inhibits autophagy significantly, reduced cell activity and increased apoptosis rate. This data demonstrated that DON exerts certain toxic effect on PHNCs, induced apoptosis and autophagy. PI3K/Akt/mTOR signaling pathway plays a negative regulatory role in DON-induced autophagy of PHNCs. At the same time, autophagy plays a protective role in DON-induced PHNCs injury.


Assuntos
Autofagia/efeitos dos fármacos , Hipocampo/citologia , Neurônios/efeitos dos fármacos , Tricotecenos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Suínos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
14.
J Nutr Biochem ; 78: 108324, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32004926

RESUMO

Green tea polyphenols (GTPs) exhibit beneficial effects towards obesity and intestinal inflammation; however, the mechanisms and association with gut microbiota are unclear. We examined the role of the gut microbiota of GTPs treatment for obesity and inflammation. Canines were fed either a normal diet or high-fat diet with low (0.48% g/kg), medium (0.96% g/kg), or high (1.92% g/kg), doses of GTPs for 18 weeks. GTPs decreased the relative abundance of Bacteroidetes and Fusobacteria and increased the relative abundance of Firmicutes as revealed by 16S rRNA gene sequencing analysis. The relative proportion of Acidaminococcus, Anaerobiospirillum, Anaerovibrio, Bacteroides, Blautia, Catenibactetium, Citrobacter, Clostridium, Collinsella, and Escherichia were significantly associated with GTPs-induced weight loss. GTPs significantly (P<.01) decreased expression levels of inflammatory cytokines, including TNF-α, IL-6, and IL-1ß, and inhibited induction of the TLR4 signaling pathway compared with high-fat diet. We show that the therapeutic effects of GTPs correspond with changes in gut microbiota and intestinal inflammation, which may be related to the anti-inflammatory and anti-obesity mechanisms of GTPs.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/microbiologia , Obesidade/terapia , Polifenóis/administração & dosagem , Chá/química , Animais , Análise por Conglomerados , Dieta Hiperlipídica , Suplementos Nutricionais , Cães , Firmicutes/classificação , Fusobactérias/classificação , Guanosina Trifosfato/metabolismo , Inflamação , Mucosa Intestinal/metabolismo , Intestinos/patologia , Masculino , Obesidade/metabolismo , Filogenia , RNA Ribossômico 16S , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Aumento de Peso/efeitos dos fármacos
15.
J Cell Physiol ; 235(11): 7803-7815, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31930515

RESUMO

Deoxynivalenol (DON) is a major mycotoxin from the trichothecene family of mycotoxins produced by Fusarium fungi. It can cause a variety of adverse effects on human and farm animal health. Here, we determined the effect of DON on the Class III phosphatidylinositol 3-kinase (PIK3C3)/beclin 1/B cell lymphoma-2 (Bcl-2) pathway in PC12 cells and the relationship between autophagy and apoptosis. The effects of DON were evaluated based on the apoptosis ratio; the typical indicators of autophagy, including cellular morphology, acridine orange- and monodansylcadaverine-labeled vacuoles, green fluorescent protein-microtubule associated protein 1 light chain 3 (LC3) localization, and LC3 immunofluorescence; and the expression of key autophagy-related genes and proteins, that is, PIK3C3, beclin 1, Bcl-2, LC3, and p62. The relationship between autophagy and apoptosis was analyzed by western blot analysis and flow cytometry. DON-induced PC12 cell morphological changes and autophagy significantly. PIK3C3, beclin 1, and LC3 increased in tandem with the DON concentration used; Bcl-2 and p62 expression decreased as DON concentrations increased. Moreover, the PIK3C3/beclin 1/Bcl-2 signaling pathway played a role in DON-induced autophagy. Our findings suggest that DON can induce autophagy by activating the PIK3C3/beclin 1/Bcl-2 signaling pathway and that autophagy may play a positive role in reducing DON-induced apoptosis.


Assuntos
Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Tricotecenos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Autofagia/fisiologia , Células PC12 , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
16.
Toxins (Basel) ; 11(12)2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888297

RESUMO

The aim of this study was to investigate the effects of deoxynivalenol (DON) exposure on the inflammatory injury nuclear factor kappa-B (NF-κB) pathway in intestinal epithelial cells (IPEC-J2 cells) of pig. The different concentrations of DON (0, 125, 250, 500, 1000, 2000 ng/mL) were added to the culture solution for treatment. The NF-κB pathway inhibitor pyrrolidine dithiocarbamate (PDTC) was used as a reference. The results showed that when the DON concentration increased, the cell density decreased and seemed damaged. With the increase of DON concentration in the culture medium, the action of diamine oxidase (DAO) in the culture supernatant also increased. The activities of IL-6, TNF-α, and NO in the cells were increased with the increasing DON concentration. The relative mRNA expression of IL-1ß and IL-6 were increased in the cells. The mRNA relative expression of NF-κB p65, IKKα, and IKKß were upregulated with the increasing of DON concentration, while the relative expression of IκB-α mRNA was downregulated. At the same time, the expression of NF-κB p65 protein increased gradually in the cytoplasm and nucleus with a higher concentration of DON. These results showed that DON could change the morphology of IPEC-J2 cells, destroy its submicroscopic structure, and enhance the permeability of cell membrane, as well as upregulate the transcription of some inflammatory factors and change the expression of NF-κB-related gene or protein in cells.


Assuntos
Inflamação/induzido quimicamente , Fator de Transcrição RelA/metabolismo , Tricotecenos/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Citocinas/genética , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Quinase I-kappa B/genética , Inflamação/genética , Inflamação/metabolismo , Intestinos/citologia , Óxido Nítrico Sintase Tipo II/genética , Transdução de Sinais/efeitos dos fármacos , Suínos , Fator de Transcrição RelA/genética
17.
Toxicon ; 155: 1-8, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30290166

RESUMO

Deoxynivalenol (DON) is a mycotoxin capable of producing a variety of toxic effects in human and animals. In this study, the effect of DON treatment on cytotoxicity and apoptotic pathways in piglet hippocampal nerve cells (PHNCs) was determined. The effects of DON on cellular morphology, cell activity, lactate dehydrogenase (LDH) release, the protein expression of mitogen-activated protein kinase (MAPK) pathway, and the relative expression of key genes related to apoptosis were evaluated. The results indicated that DON significantly inhibited cellular viability and promoted the release of LDH by damaging the membrane integrity of PHNCs, however, the cellular viability was increased and LDH leakage rate were decreased after adding MAPK inhibitors. DON induced PHNCs apoptosis and phosphorylation of MAPK pathway proteins dose-dependently. The ratios of phospho p-JNK/JNK and p-p38/p38 significantly increased with the increase of DON concentration, while the p-ERK/ERK ratio significantly decreased. In addition, DON upregulated the BAX mRNA level, and downregulated the BCL2 mRNA level. Pre-incubation with inhibitors of JNK (SP600125) and p38 (SB202190) significantly decreases the BAX/BCL2 ratio. However, pre-incubation with the inhibitor of ERK (U0126), significantly increased the BAX/BCL2 ratio. These data demonstrated that DON induces toxic effects and apoptosis in PHNCs via the MAPK signaling pathway.


Assuntos
Hipocampo/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Tricotecenos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Hipocampo/enzimologia , Hipocampo/patologia , L-Lactato Desidrogenase/metabolismo , Neurônios/enzimologia , Neurônios/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Suínos , Proteína X Associada a bcl-2/metabolismo
18.
Nutrients ; 10(7)2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29954124

RESUMO

Sperm cells are highly sensitive to reactive oxygen species (ROS), which are produced during cellular oxidation. In normal cell biology, ROS levels increase with a decreasing antioxidant response, resulting in oxidative stress which threatens sperm biology. Oxidative stress has numerous effects, including increased apoptosis, reduced motion parameters, and reduced sperm integrity. In this regard, green tea polyphenols (GrTPs) have been reported to possess properties that may increase the quality of male and female gametes, mostly via the capability of catechins to reduce ROS production. GrTPs have antioxidant properties that improve major semen parameters, such as sperm concentration, motility, morphology, DNA damage, fertility rate, and gamete quality. These unique properties of green tea catechins could improve reproductive health and represent an important study area. This exploratory review discusses the therapeutic effects of GrTPs against infertility, their possible mechanisms of action, and recommended supportive therapy for improving fertility in humans and in animals.


Assuntos
Antioxidantes/uso terapêutico , Fármacos para a Fertilidade Feminina/uso terapêutico , Fármacos para a Fertilidade Masculina/uso terapêutico , Fertilidade/efeitos dos fármacos , Infertilidade Feminina/tratamento farmacológico , Infertilidade Masculina/tratamento farmacológico , Polifenóis/uso terapêutico , Saúde Reprodutiva , Chá , Animais , Antioxidantes/isolamento & purificação , Feminino , Humanos , Infertilidade Feminina/metabolismo , Infertilidade Feminina/patologia , Infertilidade Feminina/fisiopatologia , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Infertilidade Masculina/fisiopatologia , Masculino , Óvulo/efeitos dos fármacos , Óvulo/metabolismo , Óvulo/patologia , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/isolamento & purificação , Gravidez , Fatores de Risco , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Espermatozoides/patologia , Chá/química
19.
Inflammopharmacology ; 26(2): 319-330, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29532213

RESUMO

Inflammatory bowel disease (IBD) is a collection of inflammatory conditions of colon and small intestine which affect millions of individuals worldwide and the prevalence amount is on the rise. The organ failure as well as loss of tissue function is because of the inflammatory reaction which is the major contributor of tissue healing leading to lifelong debilitation. To stop the tough consequences of inflammation every patient pursues alternative therapy to relieve symptoms. Green tea polyphenols (GTPs) play significant roles in down regulating signaling pathways because GTPs exert effective antioxidant properties and regulate Toll-like receptor 4 (TLR4) expression via certain receptor, inhibited endotoxin-mediated tumor necrosis factor alpha (TNF-α) production by blocking transcription nuclear factor-kappa B (NF-kB) activation and upstream of mediated I kappa B kinase complex pathway activities, as well as intrusion with the flow of cytokines and synthesis of cyclooxygenase-2 (COX-2). This article highlights the green approach regarding the defensive effects of GTP review-related studies concerning the contrary effects and the key therapeutic targets application of GTPs in biomedical field to treat inflammatory bowel disease (IBD) and its complications. .


Assuntos
Doenças Inflamatórias Intestinais/tratamento farmacológico , Polifenóis/farmacologia , Chá/química , Animais , Antioxidantes/farmacologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA