Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023229

RESUMO

Ribonucleic acids (RNAs), particularly the noncoding RNAs, play key roles in cancer, making them attractive drug targets. While conventional methods such as high throughput screening are resource-intensive, computational methods such as RNA-ligand docking can be used as an alternative. However, currently available docking methods are fine-tuned to perform protein-ligand and protein-protein docking. In this work, we evaluated three commonly used docking methods─AutoDock Vina, HADDOCK, and HDOCK─alongside RLDOCK, which is specifically designed for RNA-ligand docking. Our evaluation was based on several criteria including cognate docking, blind docking, scoring potential, and ranking potential. In cognate docking, only RLDOCK showed a success rate of 70% for the top-scoring docked pose. Despite this, all four docking methods did not achieve an overall success rate exceeding 50% amidst our attempt to refine the top-scoring docked poses using molecular dynamics simulations. Meanwhile, all four docking methods showed poor performance in scoring potential evaluation. Although AutoDock Vina achieved an area under the receiver operating characteristic curve of 0.70, it showed poor performance in terms of Matthews' correlation coefficient, precision, enrichment factors, and normalized enrichment factors at 1, 2, and 5%. These results highlight the growing need for further optimization of docking methods to assess RNA-ligand interactions.

2.
J Cheminform ; 16(1): 40, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38582911

RESUMO

Poly ADP-ribose polymerase 1 (PARP1) is an attractive therapeutic target for cancer treatment. Machine-learning scoring functions constitute a promising approach to discovering novel PARP1 inhibitors. Cutting-edge PARP1-specific machine-learning scoring functions were investigated using semi-synthetic training data from docking activity-labelled molecules: known PARP1 inhibitors, hard-to-discriminate decoys property-matched to them with generative graph neural networks and confirmed inactives. We further made test sets harder by including only molecules dissimilar to those in the training set. Comprehensive analysis of these datasets using five supervised learning algorithms, and protein-ligand fingerprints extracted from docking poses and ligand only features revealed one highly predictive scoring function. This is the PARP1-specific support vector machine-based regressor, when employing PLEC fingerprints, which achieved a high Normalized Enrichment Factor at the top 1% on the hardest test set (NEF1% = 0.588, median of 10 repetitions), and was more predictive than any other investigated scoring function, especially the classical scoring function employed as baseline.

3.
ACS Omega ; 9(2): 2250-2262, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250404

RESUMO

The protein c-Myc is a transcription factor that remains largely intrinsically disordered and is known to be involved in various biological processes and is overexpressed in various cancers, making it an attractive drug target. However, intrinsically disordered proteins such as c-Myc do not show funnel-like basins in their free-energy landscapes; this makes their druggability a challenge. For the first time, we propose a heterodimer model of c-Myc/Max in full length in this work. We used Gaussian-accelerated molecular dynamics (GaMD) simulations to explore the behavior of c-Myc and its various regions, including the transactivation domain (TAD) and the basic helix-loop-helix-leucine-zipper (bHLH-Zipper) motif in three different conformational states: (a) monomeric c-Myc, (b) c-Myc when bound to its partner protein, Max, and (c) when Max was removed after binding. We analyzed the GaMD trajectories using root-mean-square deviation (RMSD), radius of gyration, root-mean-square fluctuation, and free-energy landscape (FEL) calculations to elaborate the behaviors of these regions. The results showed that the monomeric c-Myc structure showed a higher RMSD fluctuation as compared with the c-Myc/Max heterodimer in the bHLH-Zipper motif. This indicated that the bHLH-Zipper motif of c-Myc is more stable when it is bound to Max. The TAD region in both monomeric and Max-bound states showed similar plasticity in terms of RMSD. We also conducted residue decomposition calculations and showed that the c-Myc and Max interaction could be driven mainly by electrostatic interactions and the residues Arg299, Ile403, and Leu420 seemed to play important roles in the interaction. Our work provides insights into the behavior of c-Myc and its regions that could support the development of drugs that target c-Myc and other intrinsically disordered proteins.

4.
J Chem Inf Model ; 63(21): 6912-6924, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37883148

RESUMO

Polo-like kinase 1 (PLK1) and p38γ mitogen-activated protein kinase (p38γ) play important roles in cancer pathogenesis by controlling cell cycle progression and are therefore attractive cancer targets. The design of multitarget inhibitors may offer synergistic inhibition of distinct targets and reduce the risk of drug-drug interactions to improve the balance between therapeutic efficacy and safety. We combined deep-learning-based quantitative structure-activity relationship (QSAR) modeling and hybrid-based consensus scoring to screen for inhibitors with potential activity against the targeted proteins. Using this combination strategy, we identified a potent PLK1 inhibitor (compound 4) that inhibited PLK1 activity and liver cancer cell growth in the nanomolar range. Next, we deployed both our QSAR models for PLK1 and p38γ on the Enamine compound library to identify dual-targeting inhibitors against PLK1 and p38γ. Likewise, the identified hits were subsequently subjected to hybrid-based consensus scoring. Using this method, we identified a promising compound (compound 14) that could inhibit both PLK1 and p38γ activities. At nanomolar concentrations, compound 14 inhibited the growth of human hepatocellular carcinoma and hepatoblastoma cells in vitro. This study demonstrates the combined screening strategy to identify novel potential inhibitors for existing targets.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Relação Quantitativa Estrutura-Atividade , Humanos , Proteínas de Ciclo Celular/metabolismo , Consenso , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Quinase 1 Polo-Like
5.
Sci Rep ; 13(1): 8958, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268726

RESUMO

CD39 (ectonucleoside triphosphate diphosphohydrolase-1; ENTPD1) metabolizes extracellular ATP and ADP to AMP. AMP is subsequently metabolized by CD79 to adenosine. CD39 activity is therefore a key regulator of purinergic signalling in cancer, thrombosis, and autoimmune diseases. In this study we demonstrate that soluble, recombinant CD39 shows substrate inhibition with ADP or ATP as the substrate. Although CD39 activity initially increased with increasing substrate concentration, at high concentrations of ATP or ADP, CD39 activity was markedly reduced. Although the reaction product, AMP, inhibits CD39 activity, insufficient AMP was generated under our conditions to account for the substrate inhibition seen. In contrast, inhibition was not seen with UDP or UTP as substrates. 2-methylthio-ADP also showed no substrate inhibition, indicating the nucleotide base is an important determinant of substrate inhibition. Molecular dynamics simulations revealed that ADP can undergo conformational rearrangements within the CD39 active site that were not seen with UDP or 2-methylthio-ADP. Appreciating the existence of substrate inhibition of CD39 will help the interpretation of studies of CD39 activity, including investigations into drugs that modulate CD39 activity.


Assuntos
Apirase , Humanos , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Apirase/química , Apirase/metabolismo , Difosfato de Uridina
6.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37108523

RESUMO

Protein kinase p38γ is an attractive target against cancer because it plays a pivotal role in cancer cell proliferation by phosphorylating the retinoblastoma tumour suppressor protein. Therefore, inhibition of p38γ with active small molecules represents an attractive alternative for developing anti-cancer drugs. In this work, we present a rigorous and systematic virtual screening framework to identify potential p38γ inhibitors against cancer. We combined the use of machine learning-based quantitative structure activity relationship modelling with conventional computer-aided drug discovery techniques, namely molecular docking and ligand-based methods, to identify potential p38γ inhibitors. The hit compounds were filtered using negative design techniques and then assessed for their binding stability with p38γ through molecular dynamics simulations. To this end, we identified a promising compound that inhibits p38γ activity at nanomolar concentrations and hepatocellular carcinoma cell growth in vitro in the low micromolar range. This hit compound could serve as a potential scaffold for further development of a potent p38γ inhibitor against cancer.


Assuntos
Antineoplásicos , Simulação de Dinâmica Molecular , Antineoplásicos/farmacologia , Bioensaio , Descoberta de Drogas , Ligantes , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Proteína Quinase 12 Ativada por Mitógeno/metabolismo
7.
J Cell Physiol ; 238(6): 1354-1367, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37042220

RESUMO

The voltage-gated sodium channel NaV 1.7 is involved in various pain phenotypes and is physiologically regulated by the NaV -ß3-subunit. Venom toxins ProTx-II and OD1 modulate NaV 1.7 channel function and may be useful as therapeutic agents and/or research tools. Here, we use patch-clamp recordings to investigate how the ß3-subunit can influence and modulate the toxin-mediated effects on NaV 1.7 function, and we propose a putative binding mode of OD1 on NaV 1.7 to rationalise its activating effects. The inhibitor ProTx-II slowed the rate of NaV 1.7 activation, whilst the activator OD1 reduced the rate of fast inactivation and accelerated recovery from inactivation. The ß3-subunit partially abrogated these effects. OD1 induced a hyperpolarising shift in the V1/2 of steady-state activation, which was not observed in the presence of ß3. Consequently, OD1-treated NaV 1.7 exhibited an enhanced window current compared with OD1-treated NaV 1.7-ß3 complex. We identify candidate OD1 residues that are likely to prevent the upward movement of the DIV S4 helix and thus impede fast inactivation. The binding sites for each of the toxins and the predicted location of the ß3-subunit on the NaV 1.7 channel are distinct. Therefore, we infer that the ß3-subunit influences the interaction of toxins with NaV 1.7 via indirect allosteric mechanisms. The enhanced window current shown by OD1-treated NaV 1.7 compared with OD1-treated NaV 1.7-ß3 is discussed in the context of differing cellular expressions of NaV 1.7 and the ß3-subunit in dorsal root ganglion (DRG) neurons. We propose that ß3, as the native binding partner for NaV 1.7 in DRG neurons, should be included during screening of molecules against NaV 1.7 in relevant analgesic discovery campaigns.


Assuntos
Peçonhas , Canais de Sódio Disparados por Voltagem , Humanos , Peçonhas/uso terapêutico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Analgésicos/uso terapêutico , Dor/tratamento farmacológico
8.
J Biomol Struct Dyn ; 41(12): 5583-5596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35751129

RESUMO

High-risk (HR) Human papillomavirus (e.g. HPV16 and HPV18) causes approximately two-thirds of all cervical cancers in women. Although the first and second-generation vaccines confer some protection against individuals, there are no approved drugs to treat HR-HPV infections to-date. The HPV E1 protein is an attractive drug target because the protein is highly conserved across all HPV types and is crucial for the regulation of viral DNA replication. Hence, we used the Random Forest algorithm to construct a Quantitative-Structure Activity Relationship (QSAR) model to predict the potential inhibitors against the HPV E1 protein. Our QSAR classification model achieved an accuracy of 87.5%, area under the receiver operating characteristic curve of 1.00, and F-measure of 0.87 when evaluated using an external test set. We conducted a drug repurposing campaign by deploying the model to screen the Drugbank database. The top three compounds, namely Cinalukast, Lobeglitazone, and Efatutazone were analyzed for their cell membrane permeability, toxicity, and carcinogenicity. Finally, these three compounds were subjected to molecular docking and 200 ns-long Molecular Dynamics (MD) simulations. The predicted binding free energies for the candidates were calculated using the MM-GBSA method. The binding free energies for Cinalukast, Lobeglitazone, and Efatutazone were -37.84 kcal/mol, -25.30 kcal/mol, and -29.89 kcal/mol respectively. Therefore, we propose their chemical scaffolds for future rational design of E1 inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
Papillomavirus Humano , Infecções por Papillomavirus , Humanos , Feminino , Simulação de Acoplamento Molecular , Replicação do DNA , Replicação Viral , DNA Viral , Simulação de Dinâmica Molecular
9.
J Cell Biol ; 221(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35878408

RESUMO

Upon antigen binding, the B cell receptor (BCR) undergoes clustering to form a signalosome that propagates downstream signaling required for normal B cell development and physiology. BCR clustering is dependent on remodeling of the cortical actin network, but the mechanisms that regulate actin remodeling in this context remain poorly defined. In this study, we identify the inositol 5-phosphatase INPP5B as a key regulator of actin remodeling, BCR clustering, and downstream signaling in antigen-stimulated B cells. INPP5B acts via dephosphorylation of the inositol lipid PI(4,5)P2 that in turn is necessary for actin disassembly, BCR mobilization, and cell spreading on immobilized surface antigen. These effects can be explained by increased actin severing by cofilin and loss of actin linking to the plasma membrane by ezrin, both of which are sensitive to INPP5B-dependent PI(4,5)P2 hydrolysis. INPP5B is therefore a new player in BCR signaling and may represent an attractive target for treatment of B cell malignancies caused by aberrant BCR signaling.


Assuntos
Actinas , Inositol Polifosfato 5-Fosfatases , Receptores de Antígenos de Linfócitos B , Actinas/metabolismo , Linfócitos B , Humanos , Inositol Polifosfato 5-Fosfatases/genética , Inositol Polifosfato 5-Fosfatases/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolases , Receptores de Antígenos de Linfócitos B/metabolismo
10.
Am J Transl Res ; 13(10): 11353-11363, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34786063

RESUMO

Colon adenocarcinoma (COAD) is a common tumor of the gastrointestinal tract with a high mortality rate. Current research has identified many genes associated with immune infiltration that play a vital role in the development of COAD. In this study, we analysed the prognostic and diagnostic features of such immune-related genes in the context of colonic adenocarcinoma (COAD). We analysed 17 overlapping gene expression profiles of COAD and healthy samples obtained from TCGA-COAD and public single-cell sequencing resources, to identify potential therapeutic COAD targets. We evaluated the abundance of immune infiltration with those genes using the TIMER (Tumor Immune Estimation Resource) deconvolution method. Subsequently, we developed predictive and survival models to assess the prognostic value of these genes. The LGALS4 (Galectin-4) gene was found to be significantly (P<0.05) downregulated in COAD and bladder urothelial carcinoma (BLCA) compared to healthy samples. We identified LGALS4 as a prognostic and diagnostic marker for multiple cancer types, including COAD and BLCA. Our analysis reveals a series of novel candidate drug targets, as well as candidate molecular markers, that may explain the pathogenesis of COAD and BLCA. LGALS4 gene is associated with multiple cancer types and is a possible prognostic, as well as diagnostic, marker of COAD and BLCA.

11.
Molecules ; 26(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672721

RESUMO

The ongoing coronavirus pandemic has been a burden on the worldwide population, with mass fatalities and devastating socioeconomic consequences. It has particularly drawn attention to the lack of approved small-molecule drugs to inhibit SARS coronaviruses. Importantly, lessons learned from the SARS outbreak of 2002-2004, caused by severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), can be applied to current drug discovery ventures. SARS-CoV-1 and SARS-CoV-2 both possess two cysteine proteases, the main protease (Mpro) and the papain-like protease (PLpro), which play a significant role in facilitating viral replication, and are important drug targets. The non-covalent inhibitor, GRL-0617, which was found to inhibit replication of SARS-CoV-1, and more recently SARS-CoV-2, is the only PLpro inhibitor co-crystallised with the recently solved SARS-CoV-2 PLpro crystal structure. Therefore, the GRL-0617 structural template and pharmacophore features are instrumental in the design and development of more potent PLpro inhibitors. In this work, we conducted scaffold hopping using GRL-0617 as a reference to screen over 339,000 ligands in the chemical space using the ChemDiv, MayBridge, and Enamine screening libraries. Twenty-four distinct scaffolds with structural and electrostatic similarity to GRL-0617 were obtained. These proceeded to molecular docking against PLpro using the AutoDock tools. Of two compounds that showed the most favourable predicted binding affinities to the target site, as well as comparable protein-ligand interactions to GRL-0617, one was chosen for further analogue-based work. Twenty-seven analogues of this compound were further docked against the PLpro, which resulted in two additional hits with promising docking profiles. Our in silico pipeline consisted of an integrative four-step approach: (1) ligand-based virtual screening (scaffold-hopping), (2) molecular docking, (3) an analogue search, and, (4) evaluation of scaffold drug-likeness, to identify promising scaffolds and eliminate those with undesirable properties. Overall, we present four novel, and lipophilic, scaffolds obtained from an exhaustive search of diverse and uncharted regions of chemical space, which may be further explored in vitro through structure-activity relationship (SAR) studies in the search for more potent inhibitors. Furthermore, these scaffolds were predicted to have fewer off-target interactions than GRL-0617. Lastly, to our knowledge, this work contains the largest ligand-based virtual screen performed against GRL-0617.


Assuntos
Antivirais/química , COVID-19/enzimologia , Proteases 3C de Coronavírus , Inibidores de Cisteína Proteinase/química , Simulação de Acoplamento Molecular , SARS-CoV-2/enzimologia , Antivirais/uso terapêutico , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Cristalografia por Raios X , Inibidores de Cisteína Proteinase/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Humanos , Tratamento Farmacológico da COVID-19
12.
J Biol Chem ; 295(48): 16411-16426, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32943550

RESUMO

Clinical isolates of the opportunistic pathogen Pseudomonas aeruginosa from patients with cystic fibrosis (CF) frequently contain mutations in the gene encoding an elongation factor, FusA1. Recent work has shown that fusA1 mutants often display elevated aminoglycoside resistance due to increased expression of the efflux pump, MexXY. However, we wondered whether these mutants might also be affected in other virulence-associated phenotypes. Here, we isolated a spontaneous gentamicin-resistant fusA1 mutant (FusA1P443L) in which mexXY expression was increased. Proteomic and transcriptomic analyses revealed that the fusA1 mutant also exhibited discrete changes in the expression of key pathogenicity-associated genes. Most notably, the fusA1 mutant displayed greatly increased expression of the Type III secretion system (T3SS), widely considered to be the most potent virulence factor in the P. aeruginosa arsenal, and also elevated expression of the Type VI (T6) secretion machinery. This was unexpected because expression of the T3SS is usually reciprocally coordinated with T6 secretion system expression. The fusA1 mutant also displayed elevated exopolysaccharide production, dysregulated siderophore production, elevated ribosome synthesis, and transcriptomic signatures indicative of translational stress. Each of these phenotypes (and almost all of the transcriptomic and proteomic changes associated with the fusA1 mutation) were restored to levels comparable with that in the progenitor strain by expression of the WT fusA1 gene in trans, indicating that the mutant gene is recessive. Our data show that in addition to elevating antibiotic resistance through mexXY expression (and also additional contributory resistance mechanisms), mutations in fusA1 can lead to highly selective dysregulation of virulence gene expression.


Assuntos
Proteínas de Bactérias , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica , Fator G para Elongação de Peptídeos , Polimorfismo de Nucleotídeo Único , Pseudomonas aeruginosa , Fatores de Virulência , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Mutação , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Fatores de Virulência/biossíntese , Fatores de Virulência/genética
13.
J Mol Graph Model ; 100: 107662, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32659633

RESUMO

3',5'-cyclic adenosine monophosphate (cAMP) is well known as a ubiquitous intracellular messenger regulating a diverse array of cellular processes. However, for a group of social amoebae or Dictyostelia undergoing starvation, intracellular cAMP is secreted in a pulsatile manner to their exterior. This then uniquely acts as a first messenger, triggering aggregation of the starving amoebae followed by their developmental progression towards multicellular fruiting bodies formation. Such developmental signalling for extracellularly-acting cAMP is well studied in the popular dictyostelid, Dictyostelium discoideum, and is mediated by a distinct family ('class E') of G protein-coupled receptors (GPCRs) collectively designated as the cAMP receptors (cARs). Whilst the biochemical aspects of these receptors are well characterised, little is known about their overall 3D architecture and structural basis for cAMP recognition and subtype-dependent changes in binding affinity. Using a ligand docking-guided homology modelling approach, we hereby present for the first time, plausible models of active forms of the cARs from D. discoideum. Our models highlight some structural features that may underlie the differential affinities of cAR isoforms for cAMP binding and also suggest few residues that may play important roles for the activation mechanism of this GPCR family.


Assuntos
Dictyostelium , AMP Cíclico , Receptores de AMP Cíclico , Receptores Acoplados a Proteínas G , Transdução de Sinais
14.
Biochem Pharmacol ; 174: 113823, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31987856

RESUMO

Supressed levels of intracellular cAMP have been associated with malignancy. Thus, elevating cAMP through activation of adenylyl cyclase (AC) or by inhibition of phosphodiesterase (PDE) may be therapeutically beneficial. Here, we demonstrate that elevated cAMP levels suppress growth in C6 cells (a model of glioma) through treatment with forskolin, an AC activator, or a range of small molecule PDE inhibitors with differing selectivity profiles. Forskolin suppressed cell growth in a PKA-dependent manner by inducing a G2/M phase cell cycle arrest. In contrast, trequinsin (a non-selective PDE2/3/7 inhibitor), not only inhibited cell growth via PKA, but also stimulated (independent of PKA) caspase-3/-7 and induced an aneuploidy phenotype. Interestingly, a cocktail of individual PDE 2,3,7 inhibitors suppressed cell growth in a manner analogous to forskolin but not trequinsin. Finally, we demonstrate that concomitant targeting of both AC and PDEs synergistically elevated intracellular cAMP levels thereby potentiating their antiproliferative actions.


Assuntos
Proliferação de Células/fisiologia , AMP Cíclico/metabolismo , Glioma/metabolismo , Inibidores do Crescimento/farmacologia , Líquido Intracelular/metabolismo , Adenilil Ciclases/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colforsina/farmacologia , Glioma/patologia , Humanos , Líquido Intracelular/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Ratos
15.
Biochim Biophys Acta Mol Cell Res ; 1866(7): 1151-1161, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30408544

RESUMO

Two-pore channels (TPCs) are Ca2+-permeable ion channels localised to the endo-lysosomal system where they regulate trafficking of various cargoes including viruses. As a result, TPCs are emerging as important drug targets. However, their pharmacology is ill-defined. There are no approved drugs to target them. And their mechanism of ligand activation is largely unknown. Here, we identify a number of FDA-approved drugs as TPC pore blockers. Using a model of the pore of human TPC2 based on recent structures of mammalian TPCs, we virtually screened a database of ~1500 approved drugs. Because TPCs have recently emerged as novel host factors for Ebola virus entry, we reasoned that Ebola virus entry inhibitors may exert their effects through inhibition of TPCs. Cross-referencing hits from the TPC virtual screen with two recent high throughput anti-Ebola screens yielded approved drugs targeting dopamine and estrogen receptors as common hits. These compounds inhibited endogenous NAADP-evoked Ca2+ release from sea urchin egg homogenates, NAADP-mediated channel activity of TPC2 re-routed to the plasma membrane, and PI(3,5)P2-mediated channel activity of TPC2 expressed in enlarged lysosomes. Mechanistically, single channel analyses showed that the drugs reduced mean open time consistent with a direct action on the pore. Functionally, drug potency in blocking TPC2 activity correlated with inhibition of Ebola virus-like particle entry. Our results expand TPC pharmacology through the identification of approved drugs as novel blockers, support a role for TPCs in Ebola virus entry, and provide insight into the mechanisms underlying channel regulation. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.


Assuntos
Antivirais/farmacologia , Canais de Cálcio/metabolismo , Ebolavirus/metabolismo , Lisossomos/metabolismo , Internalização do Vírus/efeitos dos fármacos , Animais , Antivirais/química , Canais de Cálcio/genética , Avaliação de Medicamentos , Ebolavirus/genética , Células HEK293 , Humanos , Lisossomos/genética , Lisossomos/virologia , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Ouriços-do-Mar
16.
Sci Rep ; 7(1): 12881, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038464

RESUMO

The store-operated calcium entry (SOCE) pathway is an important route for generating cytosolic Ca2+ signals that regulate a diverse array of biological processes. Abnormal SOCE seem to underlie several diseases that notably include allergy, inflammation and cancer. Therefore, any modulator of this pathway is likely to have significant impact in cell biology under both normal and abnormal conditions. In this study, we screened the FDA-approved drug library for agents that share significant similarity in 3D shape and surface electrostatics with few, hitherto best known inhibitors of SOCE. This has led to the identification of five drugs that showed dose-dependent inhibition of SOCE in cell-based assay, probably through interacting with the Orai1 protein which effectively mediates SOCE. Of these drugs, leflunomide and teriflunomide could suppress SOCE significantly at clinically-relevant doses and this provides for an additional mechanism towards the therapeutic utility of these drugs as immunosuppressants. The other three drugs namely lansoprazole, tolvaptan and roflumilast, were less potent in suppressing SOCE but were more selective and thus they may serve as novel scaffolds for future development of new, more efficacious SOCE inhibitors.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Aprovação de Drogas , United States Food and Drug Administration , Anilidas/farmacologia , Animais , Bioensaio , Sinalização do Cálcio/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Células HeLa , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ligantes , Fatores de Transcrição NFATC/metabolismo , Proteína ORAI1/metabolismo , Multimerização Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Molécula 1 de Interação Estromal/metabolismo , Tapsigargina/farmacologia , Tiadiazóis/farmacologia , Estados Unidos , Interface Usuário-Computador
17.
Bioorg Med Chem Lett ; 27(4): 733-739, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28129976

RESUMO

Drug efflux pumps confer multidrug resistance to dangerous pathogens which makes these pumps important drug targets. We have synthesised a novel series of compounds based on a 2-naphthamide pharmacore aimed at inhibiting the efflux pumps from Gram-negative bacteria. The archeatypical transporter AcrB from Escherichia coli was used as model efflux pump as AcrB is widely conserved throughout Gram-negative organisms. The compounds were tested for their antibacterial action, ability to potentiate the action of antibiotics and for their ability to inhibit Nile Red efflux by AcrB. None of the compounds were antimicrobial against E. coli wild type cells. Most of the compounds were able to inhibit Nile Red efflux indicating that they are substrates of the AcrB efflux pump. Three compounds were able to synergise with antibiotics and reverse resistance in the resistant phenotype. Compound A3, 4-(isopentyloxy)-2-naphthamide, reduced the MICs of erythromycin and chloramphenicol to the MIC levels of the drug sensitive strain that lacks an efflux pump. A3 had no effect on the MIC of the non-substrate rifampicin indicating that this compound acts specifically through the AcrB efflux pump. A3 also does not act through non-specific mechanisms such as outer membrane or inner membrane permeabilisation and is not cytotoxic against mammalian cell lines. Therefore, we have designed and synthesised a novel chemical compound with great potential to further optimisation as inhibitor of drug efflux pumps.


Assuntos
Amidas/química , Anti-Infecciosos/química , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Amidas/farmacologia , Amidas/toxicidade , Anti-Infecciosos/farmacologia , Anti-Infecciosos/toxicidade , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Cloranfenicol/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Eritromicina/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Ligação de Hidrogênio , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Naftóis/química , Estrutura Terciária de Proteína
18.
Sci Rep ; 6: 23732, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27046077

RESUMO

Gankyrin is an ankyrin-repeat oncoprotein whose overexpression has been implicated in the development of many cancer types. Elevated gankyrin levels are linked to aberrant cellular events including enhanced degradation of tumour suppressor protein p53, and inhibition of gankyrin activity has therefore been identified as an attractive anticancer strategy. Gankyrin interacts with several partner proteins, and a number of these protein-protein interactions (PPIs) are of relevance to cancer. Thus, molecules that bind the PPI interface of gankyrin and interrupt these interactions are of considerable interest. Herein, we report the discovery of a small molecule termed cjoc42 that is capable of binding to gankyrin. Cell-based experiments demonstrate that cjoc42 can inhibit gankyrin activity in a dose-dependent manner: cjoc42 prevents the decrease in p53 protein levels normally associated with high amounts of gankyrin, and it restores p53-dependent transcription and sensitivity to DNA damage. The results represent the first evidence that gankyrin is a "druggable" target with small molecules.


Assuntos
Benzenossulfonatos/química , Regulação Neoplásica da Expressão Gênica , Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Triazóis/química , Antineoplásicos/química , Aurora Quinase A/metabolismo , Calorimetria , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Dano ao DNA , Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Rad51 Recombinase/metabolismo , Termodinâmica , Proteína Supressora de Tumor p53/metabolismo
19.
J Colloid Interface Sci ; 469: 63-68, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26871275

RESUMO

Residual trapping, a key CO2 geo-storage mechanism during the first decades of a sequestration project, immobilizes micrometre sized CO2 bubbles in the pore network of the rock. This mechanism has been proven to work in clean sandstones and carbonates; however, this mechanism has not been proven for the economically most important storage sites into which CO2 will be initially injected at industrial scale, namely oil reservoirs. The key difference is that oil reservoirs are typically oil-wet or intermediate-wet, and it is clear that associated pore-scale capillary forces are different. And this difference in capillary forces clearly reduces the capillary trapping capacity (residual trapping) as we demonstrate here. For an oil-wet rock (water contact angle θ=130°) residual CO2 saturation SCO2,r (≈8%) was approximately halved when compared to a strongly water-wet rock (θ=0°; SCO2,r≈15%). Consequently, residual trapping is less efficient in oil-wet reservoirs.

20.
Int Sch Res Notices ; 2014: 938543, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27382611

RESUMO

Mangrove plants are specialized woody plants growing in the swamps of tidal-coastal areas and river deltas of tropical and subtropical parts of the world. They have been utilized for medicinal and other purposes by the coastal people over the years. Heritiera fomes Buch. Ham. (family: Sterculiaceae) commonly known as Sundari (Bengali) is a preeminent mangrove plant occurring in the Sundarbans forest located in the southern part of Bangladesh and adjoining West Bengal province of India. The plant has applications in traditional folk medicine as evidenced by its extensive use for treating diabetes, hepatic disorders, gastrointestinal disorders, goiter, and skin diseases by the local people and traditional health practitioners. A number of investigations indicated that the plant possesses significant antioxidant, antinociceptive, antihyperglycemic, antimicrobial, and anticancer activities. Phytochemical analyses have revealed the presence of important chemical constituents like saponins, alkaloids, glycosides, tannins, steroids, flavonoids, gums, phytosterols, and reducing sugars. The present study is aimed at compiling information on phytochemical, biological, pharmacological, and ethnobotanical properties of this important medicinal plant, with a view to critically assess the legitimacy of the use of this plant in the aforementioned disorders as well as providing directions for further research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA