Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(4): 107163, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484799

RESUMO

The use of variable domain of the heavy-chain of the heavy-chain-only antibodies (VHHs) as disease-modifying biomolecules in neurodegenerative disorders holds promises, including targeting of aggregation-sensitive proteins. Exploitation of their clinical values depends however on the capacity to deliver VHHs with optimal physico-chemical properties for their specific context of use. We described previously a VHH with high therapeutic potential in a family of neurodegenerative diseases called tauopathies. The activity of this promising parent VHH named Z70 relies on its binding within the central region of the tau protein. Accordingly, we carried out random mutagenesis followed by yeast two-hybrid screening to obtain optimized variants. The VHHs selected from this initial screen targeted the same epitope as VHH Z70 as shown using NMR spectroscopy and had indeed improved binding affinities according to dissociation constant values obtained by surface plasmon resonance spectroscopy. The improved affinities can be partially rationalized based on three-dimensional structures and NMR data of three complexes consisting of an optimized VHH and a peptide containing the tau epitope. Interestingly, the ability of the VHH variants to inhibit tau aggregation and seeding could not be predicted from their affinity alone. We indeed showed that the in vitro and in cellulo VHH stabilities are other limiting key factors to their efficacy. Our results demonstrate that only a complete pipeline of experiments, here described, permits a rational selection of optimized VHH variants, resulting in the selection of VHH variants with higher affinities and/or acting against tau seeding in cell models.


Assuntos
Proteínas Intrinsicamente Desordenadas , Anticorpos de Domínio Único , Proteínas tau , Humanos , Epitopos/química , Epitopos/imunologia , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/imunologia , Peptídeos/química , Peptídeos/imunologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Proteínas tau/química , Proteínas tau/imunologia
2.
ACS Chem Neurosci ; 10(9): 3997-4006, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31380615

RESUMO

Tau is a neuronal protein linked to pathologies called tauopathies, including Alzheimer's disease. In Alzheimer's disease, tau aggregates into filaments, leading to the observation of intraneuronal fibrillary tangles. Molecular mechanisms resulting in tau aggregation and in tau pathology spreading through the brain regions are still not fully understood. New tools are thus needed to decipher tau pathways involved in the diseases. In this context, a family of novel single domain antibody fragments, or VHHs, directed against tau were generated and characterized. Among the selected VHHs obtained from screening of a synthetic library, a family of six VHHs shared the same CDR3 recognition loop and recognized the same epitope, located in the C-terminal domain of tau. Affinity parameters characterizing the tau/VHHs interaction were next evaluated using surface plasmon resonance spectroscopy. The equilibrium constants KD were in the micromolar range, but despite conservation of the CDR3 loop sequence, a range of affinities was observed for this VHH family. One of these VHHs, named F8-2, was additionally shown to bind tau upon expression in a neuronal cell line model. Optimization of VHH F8-2 by yeast two-hybrid allowed the generation of an optimized VHH family characterized by lower KD than that of the F8-2 wild-type counterpart, and recognizing the same epitope. The optimized VHHs can also be used as antibodies for detecting tau in transgenic mice brain tissues. These results validate the use of these VHHs for in vitro studies, but also their potential for in-cell expression and assays in mouse models, to explore the mechanisms underlying tau physiopathology.


Assuntos
Neurônios/metabolismo , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Fragmentos de Imunoglobulinas/genética , Fragmentos de Imunoglobulinas/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/patologia
3.
Elife ; 52016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27434673

RESUMO

In vitro selection of antibodies allows to obtain highly functional binders, rapidly and at lower cost. Here, we describe the first fully synthetic phage display library of humanized llama single domain antibody (NaLi-H1: Nanobody Library Humanized 1). Based on a humanized synthetic single domain antibody (hs2dAb) scaffold optimized for intracellular stability, the highly diverse library provides high affinity binders without animal immunization. NaLi-H1 was screened following several selection schemes against various targets (Fluorescent proteins, actin, tubulin, p53, HP1). Conformation antibodies against active RHO GTPase were also obtained. Selected hs2dAb were used in various immunoassays and were often found to be functional intrabodies, enabling tracking or inhibition of endogenous targets. Functionalization of intrabodies allowed specific protein knockdown in living cells. Finally, direct selection against the surface of tumor cells produced hs2dAb directed against tumor-specific antigens further highlighting the potential use of this library for therapeutic applications.


Assuntos
Anticorpos Monoclonais Humanizados , Biologia Molecular/métodos , Biblioteca de Peptídeos , Anticorpos de Domínio Único , Animais , Camelídeos Americanos , Humanos
4.
Nucleic Acids Res ; 43(21): 10456-73, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26420826

RESUMO

Splicing factor 1 (SF1) recognizes the branch point sequence (BPS) at the 3' splice site during the formation of early complex E, thereby pre-bulging the BPS adenosine, thought to facilitate subsequent base-pairing of the U2 snRNA with the BPS. The 65-kDa subunit of U2 snRNP auxiliary factor (U2AF65) interacts with SF1 and was shown to recruit the U2 snRNP to the spliceosome. Co-immunoprecipitation experiments of SF1-interacting proteins from HeLa cell extracts shown here are consistent with the presence of SF1 in early splicing complexes. Surprisingly almost all U2 snRNP proteins were found associated with SF1. Yeast two-hybrid screens identified two SURP domain-containing U2 snRNP proteins as partners of SF1. A short, evolutionarily conserved region of SF1 interacts with the SURP domains, stressing their role in protein-protein interactions. A reduction of A complex formation in SF1-depleted extracts could be rescued with recombinant SF1 containing the SURP-interaction domain, but only partial rescue was observed with SF1 lacking this sequence. Thus, SF1 can initially recruit the U2 snRNP to the spliceosome during E complex formation, whereas U2AF65 may stabilize the association of the U2 snRNP with the spliceosome at later times. In addition, these findings may have implications for alternative splicing decisions.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/isolamento & purificação , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Fatores de Processamento de RNA , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U2/química , Ribonucleoproteína Nuclear Pequena U2/isolamento & purificação , Ribonucleoproteínas/metabolismo , Spliceossomos/metabolismo , Fator de Processamento U2AF , Fatores de Transcrição/química , Fatores de Transcrição/isolamento & purificação
5.
Cell Cycle ; 14(8): 1242-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25695197

RESUMO

Beside its central role in the mitochondria-dependent cell death pathway, the apoptotic protease activating factor 1 (Apaf-1) is involved in the DNA damage response through cell-cycle arrest induced by genotoxic stress. This non-apoptotic function requires a nuclear translocation of Apaf-1 during the G1-to-S transition. However, the mechanisms that trigger the nuclear accumulation of Apaf-1 upon DNA damage remain to be investigated. Here we show that the main 4 isoforms of Apaf-1 can undergo nuclear translocation and restore Apaf-1 deficient MEFs cell cycle arrest in the S phase following genotoxic stress through activation of Chk-1. Interestingly, DNA damage-dependent nuclear accumulation of Apaf-1 occurs independently of p53 and the retinoblastoma (pRb) pathway. We demonstrated that Apaf-1 associates with the nucleoporin Nup107 and this association is necessary for Apaf-1 nuclear import. The CED-4 domain of Apaf-1 directly binds to the central domain of Nup107 in an ATR-regulated, phosphorylation-dependent manner. Interestingly, expression of the Apaf-1-interacting domain of Nup107 interfered with Apaf-1 nuclear translocation upon genotoxic stress, resulting in a marked reduction of Chk-1 activation and cell cycle arrest. Thus, our results confirm the crucial role of Apaf-1 nuclear relocalization in mediating cell-cycle arrest induced by genotoxic stress and implicate Nup107 as a critical regulator of the DNA damage-induced intra-S phase checkpoint response.


Assuntos
Fator Apoptótico 1 Ativador de Proteases/metabolismo , Núcleo Celular/metabolismo , Dano ao DNA , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Animais , Fator Apoptótico 1 Ativador de Proteases/deficiência , Fator Apoptótico 1 Ativador de Proteases/genética , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular , Quinase 1 do Ponto de Checagem , Cisplatino/toxicidade , Dano ao DNA/efeitos dos fármacos , Humanos , Camundongos , Complexo de Proteínas Formadoras de Poros Nucleares/antagonistas & inibidores , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Fosforilação/efeitos dos fármacos , Ligação Proteica , Isoformas de Proteínas/metabolismo , Proteínas Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína do Retinoblastoma/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Mol Cancer Ther ; 8(8): 2286-95, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19671755

RESUMO

Deregulation of the ubiquitin/proteasome system has been implicated in the pathogenesis of many human diseases, including cancer. Ubiquitin-specific proteases (USP) are cysteine proteases involved in the deubiquitination of protein substrates. Functional connections between USP7 and essential viral proteins and oncogenic pathways, such as the p53/Mdm2 and phosphatidylinositol 3-kinase/protein kinase B networks, strongly suggest that the targeting of USP7 with small-molecule inhibitors may be useful for the treatment of cancers and viral diseases. Using high-throughput screening, we have discovered HBX 41,108, a small-molecule compound that inhibits USP7 deubiquitinating activity with an IC(50) in the submicromolar range. Kinetics data indicate an uncompetitive reversible inhibition mechanism. HBX 41,108 was shown to affect USP7-mediated p53 deubiquitination in vitro and in cells. As RNA interference-mediated USP7 silencing in cancer cells, HBX 41,108 treatment stabilized p53, activated the transcription of a p53 target gene without inducing genotoxic stress, and inhibited cancer cell growth. Finally, HBX 41,108 induced p53-dependent apoptosis as shown in p53 wild-type and null isogenic cancer cell lines. We thus report the identification of the first lead-like inhibitor against USP7, providing a structural basis for the development of new anticancer drugs.


Assuntos
Indenos/farmacologia , Inibidores de Proteases/farmacologia , Pirazinas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Proteína Supressora de Tumor p53/genética , Ubiquitina Tiolesterase/metabolismo , Peptidase 7 Específica de Ubiquitina
7.
EMBO J ; 28(11): 1576-88, 2009 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-19387494

RESUMO

The nuclear factor Acinus has been suggested to mediate apoptotic chromatin condensation after caspase cleavage. However, this role has been challenged by recent observations suggesting a contribution of Acinus in apoptotic internucleosomal DNA cleavage. We report here that AAC-11, a survival protein whose expression prevents apoptosis that occurs on deprivation of growth factors, physiologically binds to Acinus and prevents Acinus-mediated DNA fragmentation. AAC-11 was able to protect Acinus from caspase-3 cleavage in vivo and in vitro, thus interfering with its biological function. Interestingly, AAC-11 depletion markedly increased cellular sensitivity to anticancer drugs, whereas its expression interfered with drug-induced cell death. AAC-11 possesses a leucine-zipper domain that dictates, upon oligomerization, its interaction with Acinus as well as the antiapoptotic effect of AAC-11 on drug-induced cell death. A cell permeable peptide that mimics the leucine-zipper subdomain of AAC-11, thus preventing its oligomerization, inhibited the AAC-11-Acinus complex formation and potentiated drug-mediated apoptosis in cancer cells. Our results, therefore, show that targeting AAC-11 might be a potent strategy for cancer treatment by sensitization of tumour cells to chemotherapeutic drugs.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Fragmentação do DNA , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Mapeamento de Interação de Proteínas , Apoptose , Inibidores de Caspase , Linhagem Celular , Humanos , Zíper de Leucina , Ligação Proteica
8.
J Biol Chem ; 284(17): 11467-77, 2009 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-19244240

RESUMO

Lens epithelium-derived growth factor/p75 (LEDGF/p75) is a prominent cellular interaction partner of human immunodeficiency virus-1 (HIV-1) integrase, tethering the preintegration complex to the host chromosome. In light of the development of LEDGF/p75-integrase interaction inhibitors, it is essential to understand the cell biology of LEDGF/p75. We identified pogZ as new cellular interaction partner of LEDGF/p75. Analogous to lentiviral integrase, pogZ, a domesticated transposase, carries a DDE domain, the major determinant for LEDGF/p75 interaction. Using different in vitro and in vivo approaches, we corroborated the interaction between the C terminus of LEDGF/p75 and the DDE domain of pogZ, revealing an overlap in the binding of pogZ and HIV-1 integrase. Competition experiments showed that integrase is efficient in displacing pogZ from LEDGF/p75. Moreover, pogZ does not seem to play a role as a restriction factor of HIV. The finding that LEDGF/p75 is capable of interacting with a DDE domain protein that is not a lentiviral integrase points to a profound role of LEDGF/p75 in DDE domain protein function.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Transposases/química , Sequência de Aminoácidos , Ligação Competitiva , Linhagem Celular Tumoral , Integrase de HIV/metabolismo , Células HeLa , Humanos , Lentivirus/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Transposases/metabolismo , Transposases/fisiologia , Técnicas do Sistema de Duplo-Híbrido
9.
Retrovirology ; 5: 47, 2008 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-18544151

RESUMO

Reverse transcription of the genetic material of human immunodeficiency virus type 1 (HIV-1) is a critical step in the replication cycle of this virus. This process, catalyzed by reverse transcriptase (RT), is well characterized at the biochemical level. However, in infected cells, reverse transcription occurs in a multiprotein complex - the reverse transcription complex (RTC) - consisting of viral genomic RNA associated with viral proteins (including RT) and, presumably, as yet uncharacterized cellular proteins. Very little is known about the cellular proteins interacting with the RTC, and with reverse transcriptase in particular. We report here that HIV-1 reverse transcription is affected by the levels of a nucleocytoplasmic shuttling protein - the RNA-binding protein HuR. A direct protein-protein interaction between RT and HuR was observed in a yeast two-hybrid screen and confirmed in vitro by homogenous time-resolved fluorescence (HTRF). We mapped the domain interacting with HuR to the RNAse H domain of RT, and the binding domain for RT to the C-terminus of HuR, partially overlapping the third RRM RNA-binding domain of HuR. HuR silencing with specific siRNAs greatly impaired early and late steps of reverse transcription, significantly inhibiting HIV-1 infection. Moreover, by mutagenesis and immunoprecipitation studies, we could not detect the binding of HuR to the viral RNA. These results suggest that HuR may be involved in and may modulate the reverse transcription reaction of HIV-1, by an as yet unknown mechanism involving a protein-protein interaction with HIV-1 RT.


Assuntos
Antígenos de Superfície/metabolismo , Transcriptase Reversa do HIV/metabolismo , HIV-1/fisiologia , Mapeamento de Interação de Proteínas , Proteínas de Ligação a RNA/metabolismo , Replicação Viral , Sítios de Ligação , Linhagem Celular , Imunoprecipitação da Cromatina , Proteínas ELAV , Proteína Semelhante a ELAV 1 , Fluorimunoensaio , Inativação Gênica , Humanos , Domínios e Motivos de Interação entre Proteínas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo , Técnicas do Sistema de Duplo-Híbrido
10.
Science ; 310(5751): 1187-91, 2005 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-16293762

RESUMO

The disrupted in schizophrenia 1 (DISC1) gene is a candidate susceptibility factor for schizophrenia, but its mechanistic role in the disorder is unknown. Here we report that the gene encoding phosphodiesterase 4B (PDE4B) is disrupted by a balanced translocation in a subject diagnosed with schizophrenia and a relative with chronic psychiatric illness. The PDEs inactivate adenosine 3',5'-monophosphate (cAMP), a second messenger implicated in learning, memory, and mood. We show that DISC1 interacts with the UCR2 domain of PDE4B and that elevation of cellular cAMP leads to dissociation of PDE4B from DISC1 and an increase in PDE4B activity. We propose a mechanistic model whereby DISC1 sequesters PDE4B in resting cells and releases it in an activated state in response to elevated cAMP.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/genética , AMP Cíclico/metabolismo , Proteínas do Tecido Nervoso/genética , Esquizofrenia/genética , Transdução de Sinais , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Adulto , Transtornos Psicóticos Afetivos/genética , Transtornos Psicóticos Afetivos/metabolismo , Animais , Caderinas/genética , Linhagem Celular , Cromossomos Humanos Par 1 , Cromossomos Humanos Par 16 , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Ativação Enzimática , Predisposição Genética para Doença , Humanos , Masculino , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Ratos , Esquizofrenia/enzimologia , Esquizofrenia/metabolismo , Translocação Genética
11.
Mol Cell Biol ; 25(21): 9269-82, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16227579

RESUMO

Prp43p is a putative helicase of the DEAH family which is required for the release of the lariat intron from the spliceosome. Prp43p could also play a role in ribosome synthesis, since it accumulates in the nucleolus. Consistent with this hypothesis, we find that depletion of Prp43p leads to accumulation of 35S pre-rRNA and strongly reduces levels of all downstream pre-rRNA processing intermediates. As a result, the steady-state levels of mature rRNAs are greatly diminished following Prp43p depletion. We present data arguing that such effects are unlikely to be solely due to splicing defects. Moreover, we demonstrate by a combination of a comprehensive two-hybrid screen, tandem-affinity purification followed by mass spectrometry, and Northern analyses that Prp43p is associated with 90S, pre-60S, and pre-40S ribosomal particles. Prp43p seems preferentially associated with Pfa1p, a novel specific component of pre-40S ribosomal particles. In addition, Prp43p interacts with components of the RNA polymerase I (Pol I) transcription machinery and with mature 18S and 25S rRNAs. Hence, Prp43p might be delivered to nascent 90S ribosomal particles during pre-rRNA transcription and remain associated with preribosomal particles until their final maturation steps in the cytoplasm. Our data also suggest that the ATPase activity of Prp43p is required for early steps of pre-rRNA processing and normal accumulation of mature rRNAs.


Assuntos
Adenosina Trifosfatases/genética , RNA Helicases/genética , Precursores de RNA/genética , RNA Fúngico/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/metabolismo , RNA Helicases DEAD-box , Espectrometria de Massas , Processamento de Proteína , RNA Helicases/metabolismo , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Fúngico/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
12.
J Virol ; 78(14): 7410-7, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15220414

RESUMO

We have developed a new strategy for antiviral peptide discovery by using lyssaviruses (rabies virus and rabies-related viruses) as models. Based on the mimicry of natural bioactive peptides, two genetically encoded combinatorial peptide libraries composed of intrinsically constrained peptides (coactamers) were designed. Proteomic knowledge concerning the functional network of interactions in the lyssavirus transcription-replication complex highlights the phosphoprotein (P) as a prime target for inhibitors of viral replication. We present an integrated, sequential drug discovery process for selection of peptides with antiviral activity directed against the P. Our approach combines (i). an exhaustive two-hybrid selection of peptides binding two phylogenetically divergent lyssavirus P's, (ii). a functional analysis of protein interaction inhibition in a viral reverse genetic assay, coupled with a physical analysis of viral nucleoprotein-P complex by protein chip mass spectrometry, and (iii). an assay for inhibition of lyssavirus infection in mammalian cells. The validity of this strategy was demonstrated by the identification of four peptides exhibiting an efficient antiviral activity. Our work highlights the importance of P as a target in anti-rabies virus drug discovery. Furthermore, the screening strategy and the coactamer libraries presented in this report could be considered, respectively, a general target validation strategy and a potential source of biologically active peptides which could also help to design pharmacologically active peptide-mimicking molecules. The strategy described here is easily applicable to other pathogens.


Assuntos
Antivirais/farmacologia , Técnicas de Química Combinatória , Desenho de Fármacos , Biblioteca de Peptídeos , Vírus da Raiva/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Linhagem Celular , Espectrometria de Massas/métodos , Chaperonas Moleculares , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/farmacologia , Fosfoproteínas/efeitos dos fármacos , Fosfoproteínas/metabolismo , Vírus da Raiva/genética , Vírus da Raiva/fisiologia , Transcrição Gênica , Proteínas Estruturais Virais/efeitos dos fármacos , Proteínas Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA