Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 20(6): 2066-2084, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29521473

RESUMO

Interactions between commensal microbes and invading pathogens are understudied, despite their likely effects on pathogen population structure and infection processes. We describe the population structure and genetic diversity of a broad range of co-occurring Pseudomonas syringae isolated from infected and uninfected kiwifruit during an outbreak of bleeding canker disease caused by P. syringae pv. actinidiae (Psa) in New Zealand. Overall population structure was clonal and affected by ecological factors including infection status and cultivar. Most isolates are members of a new clade in phylogroup 3 (PG3a), also present on kiwifruit leaves in China and Japan. Stability of the polymorphism between pathogenic Psa and commensal P. syringae PG3a isolated from the same leaf was tested using reciprocal invasion from rare assays in vitro and in planta. P. syringae G33C (PG3a) inhibited Psa NZ54, while the presence of Psa NZ54 enhanced the growth of P. syringae G33C. This effect could not be attributed to virulence activity encoded by the Type 3 secretion system of Psa. Together our data contribute toward the development of an ecological perspective on the genetic structure of pathogen populations.


Assuntos
Actinidia/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Pseudomonas syringae/genética , Movimento , Virulência
2.
Genome Biol Evol ; 9(4): 932-944, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369338

RESUMO

Recurring epidemics of kiwifruit (Actinidia spp.) bleeding canker disease are caused by Pseudomonas syringae pv. actinidiae (Psa). In order to strengthen understanding of population structure, phylogeography, and evolutionary dynamics, we isolated Pseudomonas from cultivated and wild kiwifruit across six provinces in China. Based on the analysis of 80 sequenced Psa genomes, we show that China is the origin of the pandemic lineage but that strain diversity in China is confined to just a single clade. In contrast, Korea and Japan harbor strains from multiple clades. Distinct independent transmission events marked introduction of the pandemic lineage into New Zealand, Chile, Europe, Korea, and Japan. Despite high similarity within the core genome and minimal impact of within-clade recombination, we observed extensive variation even within the single clade from which the global pandemic arose.


Assuntos
Actinidia/microbiologia , Filogeografia , Doenças das Plantas/genética , Pseudomonas syringae/genética , Actinidia/genética , China , Frutas/microbiologia , Variação Genética , Nova Zelândia , Pandemias , Doenças das Plantas/microbiologia , Pseudomonas syringae/patogenicidade
3.
Environ Microbiol ; 19(2): 819-832, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28063194

RESUMO

Horizontal gene transfer can precipitate rapid evolutionary change. In 2010 the global pandemic of kiwifruit canker disease caused by Pseudomonas syringae pv. actinidiae (Psa) reached New Zealand. At the time of introduction, the single clone responsible for the outbreak was sensitive to copper, however, analysis of a sample of isolates taken in 2015 and 2016 showed that a quarter were copper resistant. Genome sequences of seven strains showed that copper resistance - comprising czc/cusABC and copABCD systems - along with resistance to arsenic and cadmium, was acquired via uptake of integrative conjugative elements (ICEs), but also plasmids. Comparative analysis showed ICEs to have a mosaic structure, with one being a tripartite arrangement of two different ICEs and a plasmid that were isolated in 1921 (USA), 1968 (NZ) and 1988 (Japan), from P. syringae pathogens of millet, wheat and kiwifruit respectively. Two of the Psa ICEs were nearly identical to two ICEs isolated from kiwifruit leaf colonists prior to the introduction of Psa into NZ. Additionally, we show ICE transfer in vitro and in planta, analyze fitness consequences of ICE carriage, capture the de novo formation of novel recombinant ICEs, and explore ICE host-range.


Assuntos
Actinidia/microbiologia , Conjugação Genética , Cobre/farmacologia , Farmacorresistência Bacteriana , Doenças das Plantas/microbiologia , Plasmídeos/genética , Pseudomonas syringae/efeitos dos fármacos , Pseudomonas syringae/genética , Evolução Biológica , Frutas/microbiologia , Especificidade de Hospedeiro , Plasmídeos/metabolismo , Pseudomonas syringae/fisiologia
5.
Front Microbiol ; 6: 1036, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26483767

RESUMO

The International Pseudomonas aeruginosa Consortium is sequencing over 1000 genomes and building an analysis pipeline for the study of Pseudomonas genome evolution, antibiotic resistance and virulence genes. Metadata, including genomic and phenotypic data for each isolate of the collection, are available through the International Pseudomonas Consortium Database (http://ipcd.ibis.ulaval.ca/). Here, we present our strategy and the results that emerged from the analysis of the first 389 genomes. With as yet unmatched resolution, our results confirm that P. aeruginosa strains can be divided into three major groups that are further divided into subgroups, some not previously reported in the literature. We also provide the first snapshot of P. aeruginosa strain diversity with respect to antibiotic resistance. Our approach will allow us to draw potential links between environmental strains and those implicated in human and animal infections, understand how patients become infected and how the infection evolves over time as well as identify prognostic markers for better evidence-based decisions on patient care.

6.
Am J Respir Crit Care Med ; 189(11): 1309-15, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24702670

RESUMO

A continuously mixed series of microbial communities inhabits various points of the respiratory tract, with community composition determined by distance from colonization sources, colonization rates, and extinction rates. Ecology and evolution theory developed in the context of biogeography is relevant to clinical microbiology and could reframe the interpretation of recent studies comparing communities from lung explant samples, sputum samples, and oropharyngeal swabs. We propose an island biogeography model of the microbial communities inhabiting different niches in human airways. Island biogeography as applied to communities separated by time and space is a useful parallel for exploring microbial colonization of healthy and diseased lungs, with the potential to inform our understanding of microbial community dynamics and the relevance of microbes detected in different sample types. In this perspective, we focus on the intermixed microbial communities inhabiting different regions of the airways of patients with cystic fibrosis.


Assuntos
Fibrose Cística/complicações , Pneumonia Bacteriana/etiologia , Sistema Respiratório/microbiologia , Humanos , Laringe/microbiologia , Orofaringe/microbiologia , Pneumonia Bacteriana/microbiologia , Traqueia/microbiologia
7.
Proc Natl Acad Sci U S A ; 110(51): 20663-8, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24306929

RESUMO

Adaptive radiation of a lineage into a range of organisms with different niches underpins the evolution of life's diversity. Although the role of the environment in shaping adaptive radiation is well established, theory predicts that the evolvability and niche of the founding ancestor are also of importance. Direct demonstration of a causal link requires resolving the independent effects of these additional factors. Here, we accomplish this using experimental bacterial populations and demonstrate how the dynamics of adaptive radiation are constrained by the niche of the founder. We manipulated the propensity of the founder to undergo adaptive radiation and resolved the underlying causal changes in both its evolvability and niche. Evolvability did not change, but the propensity for adaptive radiation was altered by changes in the position and breadth of the niche of the founder. These observations provide direct empirical evidence for a link between the niche of organisms and their propensity for adaptive radiation. This general mechanism may have rendered the evolutionary dynamics of extant adaptive radiations dependent on chance events that determined their founding ancestors.


Assuntos
Adaptação Fisiológica/fisiologia , Evolução Molecular , Pseudomonas fluorescens/fisiologia
8.
Genetics ; 195(4): 1319-35, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24077305

RESUMO

Pseudomonas fluorescens is a model for the study of adaptive radiation. When propagated in a spatially structured environment, the bacterium rapidly diversifies into a range of niche specialist genotypes. Here we present a genetic dissection and phenotypic characterization of the fuzzy spreader (FS) morphotype-a type that arises repeatedly during the course of the P. fluorescens radiation and appears to colonize the bottom of static broth microcosms. The causal mutation is located within gene fuzY (pflu0478)-the fourth gene of the five-gene fuzVWXYZ operon. fuzY encodes a ß-glycosyltransferase that is predicted to modify lipopolysaccharide (LPS) O antigens. The effect of the mutation is to cause cell flocculation. Analysis of 92 independent FS genotypes showed each to have arisen as the result of a loss-of-function mutation in fuzY, although different mutations have subtly different phenotypic and fitness effects. Mutations within fuzY were previously shown to suppress the phenotype of mat-forming wrinkly spreader (WS) types. This prompted a reinvestigation of FS niche preference. Time-lapse photography showed that FS colonizes the meniscus of broth microcosms, forming cellular rafts that, being too flimsy to form a mat, collapse to the vial bottom and then repeatably reform only to collapse. This led to a reassessment of the ecology of the P. fluorescens radiation. Finally, we show that ecological interactions between the three dominant emergent types (smooth, WS, and FS), combined with the interdependence of FS and WS on fuzY, can, at least in part, underpin an evolutionary arms race with bacteriophage SBW25Φ2, to which mutation in fuzY confers resistance.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Bactérias/genética , Especiação Genética , Glicosiltransferases/genética , Mutação , Pseudomonas fluorescens/genética , Evolução Molecular , Modelos Genéticos , Óperon , Fenótipo
9.
PLoS Pathog ; 9(7): e1003503, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935484

RESUMO

The origins of crop diseases are linked to domestication of plants. Most crops were domesticated centuries--even millennia--ago, thus limiting opportunity to understand the concomitant emergence of disease. Kiwifruit (Actinidia spp.) is an exception: domestication began in the 1930s with outbreaks of canker disease caused by P. syringae pv. actinidiae (Psa) first recorded in the 1980s. Based on SNP analyses of two circularized and 34 draft genomes, we show that Psa is comprised of distinct clades exhibiting negligible within-clade diversity, consistent with disease arising by independent samplings from a source population. Three clades correspond to their geographical source of isolation; a fourth, encompassing the Psa-V lineage responsible for the 2008 outbreak, is now globally distributed. Psa has an overall clonal population structure, however, genomes carry a marked signature of within-pathovar recombination. SNP analysis of Psa-V reveals hundreds of polymorphisms; however, most reside within PPHGI-1-like conjugative elements whose evolution is unlinked to the core genome. Removal of SNPs due to recombination yields an uninformative (star-like) phylogeny consistent with diversification of Psa-V from a single clone within the last ten years. Growth assays provide evidence of cultivar specificity, with rapid systemic movement of Psa-V in Actinidia chinensis. Genomic comparisons show a dynamic genome with evidence of positive selection on type III effectors and other candidate virulence genes. Each clade has highly varied complements of accessory genes encoding effectors and toxins with evidence of gain and loss via multiple genetic routes. Genes with orthologs in vascular pathogens were found exclusively within Psa-V. Our analyses capture a pathogen in the early stages of emergence from a predicted source population associated with wild Actinidia species. In addition to candidate genes as targets for resistance breeding programs, our findings highlight the importance of the source population as a reservoir of new disease.


Assuntos
Actinidia/microbiologia , Proteínas de Bactérias/genética , Genoma Bacteriano , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Actinidia/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Frutas/crescimento & desenvolvimento , Frutas/microbiologia , Ilhas Genômicas , Itália , Japão , Nova Zelândia , Filogenia , Doenças das Plantas/etiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/microbiologia , Polimorfismo de Nucleotídeo Único , Pseudomonas syringae/crescimento & desenvolvimento , Pseudomonas syringae/isolamento & purificação , Pseudomonas syringae/patogenicidade , Recombinação Genética , República da Coreia , Especificidade da Espécie , Virulência
10.
Proc Biol Sci ; 280(1766): 20131253, 2013 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-23843392

RESUMO

Competitors are known to be important in governing the outcome of evolutionary diversification during an adaptive radiation, but the precise mechanisms by which they exert their effects remain elusive. Using the model adaptive radiation of Pseudomonas fluorescens, we show experimentally that the effect of competition on diversification of a focal lineage depends on both the strength of competition and the ability of the competitors to diversify. We provide evidence that the extent of diversification in the absence of interspecific competitors depends on the strength of resource competition. We also show that the presence of competitors can actually increase diversity by increasing interspecific resource competition. Competitors that themselves are able to diversify prevent diversification of the focal lineage by removing otherwise available ecological opportunities. These results suggest that the progress of an adaptive radiation depends ultimately on the strength of resource competition, an effect that can be exaggerated or impeded by the presence of competitors.


Assuntos
Adaptação Fisiológica , Pseudomonas fluorescens/fisiologia , Biodiversidade , Evolução Biológica , Carbono/metabolismo , Genótipo , Modelos Biológicos , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Seleção Genética , Especificidade da Espécie
11.
Am J Respir Cell Mol Biol ; 48(2): 150-6, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23103995

RESUMO

Current therapy for cystic fibrosis (CF) focuses on minimizing the microbial community and the host's immune response through the aggressive use of airway clearance techniques, broad-spectrum antibiotics, and treatments that break down the pervasive endobronchial biofilm. Antibiotic selection is typically based on the susceptibility of individual microbial strains to specific antibiotics in vitro. Often this approach cannot accurately predict medical outcomes because of factors both technical and biological. Recent culture-independent assessments of the airway microbial and viral communities demonstrated that the CF airway infection is considerably more complex and dynamic than previously appreciated. Understanding the ecological and evolutionary pressures that shape these communities is critically important for the optimal use of current therapies (in both the choice of therapy and timing of administration) and the development of newer strategies. The climax-attack model (CAM) presented here, grounded in basic ecological principles, postulates the existence of two major functional communities. The attack community consists of transient viral and microbial populations that induce strong innate immune responses. The resultant intense immune response creates microenvironments that facilitate the establishment of a climax community that is slower-growing and inherently resistant to antibiotic therapy. Newer methodologies, including sequence-based metagenomic analysis, can track not only the taxonomic composition but also the metabolic capabilities of these changing viral and microbial communities over time. Collecting this information for CF airways will enable the mathematical modeling of microbial community dynamics during disease progression. The resultant understanding of airway communities and their effects on lung physiology will facilitate the optimization of CF therapies.


Assuntos
Antibacterianos/uso terapêutico , Fibrose Cística/tratamento farmacológico , Bactérias/classificação , Bactérias/isolamento & purificação , Fibrose Cística/imunologia , Fibrose Cística/microbiologia , Humanos
12.
PLoS One ; 7(9): e44199, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22970178

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen and an important cause of infection, particularly amongst cystic fibrosis (CF) patients. While specific strains capable of patient-to-patient transmission are known, many infections appear to be caused by unique and unrelated strains. There is a need to understand the relationship between strains capable of colonising the CF lung and the broader set of P. aeruginosa isolates found in natural environments. Here we report the results of a multilocus sequence typing (MLST)-based study designed to understand the genetic diversity and population structure of an extensive regional sample of P. aeruginosa isolates from South East Queensland, Australia. The analysis is based on 501 P. aeruginosa isolates obtained from environmental, animal and human (CF and non-CF) sources with particular emphasis on isolates from the Lower Brisbane River and isolates from CF patients obtained from the same geographical region. Overall, MLST identified 274 different sequence types, of which 53 were shared between one or more ecological settings. Our analysis revealed a limited association between genotype and environment and evidence of frequent recombination. We also found that genetic diversity of P. aeruginosa in Queensland, Australia was indistinguishable from that of the global P. aeruginosa population. Several CF strains were encountered frequently in multiple ecological settings; however, the most frequently encountered CF strains were confined to CF patients. Overall, our data confirm a non-clonal epidemic structure and indicate that most CF strains are a random sample of the broader P. aeruginosa population. The increased abundance of some CF strains in different geographical regions is a likely product of chance colonisation events followed by adaptation to the CF lung and horizontal transmission among patients.


Assuntos
Ecossistema , Pseudomonas aeruginosa/genética , Recombinação Genética , Sequência de Bases , Fibrose Cística/microbiologia , Bases de Dados Genéticas , Microbiologia Ambiental , Variação Genética , Genótipo , Geografia , Humanos , Tipagem de Sequências Multilocus , Mutação/genética , Filogenia , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/isolamento & purificação , Queensland
13.
Am J Respir Cell Mol Biol ; 46(2): 127-31, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21980056

RESUMO

Microbial communities in the lungs of patients with cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) have been shown to be spatially heterogeneous. Viral communities may also vary spatially, leading to localized viral populations and infections. Here, we characterized viral communities from multiple areas of the lungs of two patients with late-stage CF using metagenomics, that is, the explanted lungs from a transplant patient and lungs acquired postmortem. All regions harbored eukaryotic viruses that may infect the human host, notably herpesviruses, anelloviruses, and papillomaviruses. In the highly diseased apical lobes of explant lungs, viral diversity was extremely low, and only eukaryotic viruses were present. The absence of phage suggests that CF-associated microbial biofilms may escape top-down controls by phage predation. The phages present in other lobes of explant lungs and in all lobes of postmortem lungs comprised distinct communities, and encoded genes for clinically important microbial phenotypes, including small colony variants and antibiotic resistance. Based on the these observations, we postulate that viral communities in CF lungs are spatially distinct and contribute to CF pathology by augmenting the metabolic potential of resident microbes, as well as by directly damaging lung tissue via carcinomas and herpesviral outbreaks.


Assuntos
Fibrose Cística/virologia , Vírus de DNA/isolamento & purificação , Bacteriófagos/genética , Fibrose Cística/complicações , Vírus de DNA/classificação , Resistência Microbiana a Medicamentos/genética , Humanos , Viroses/complicações
14.
ISME J ; 6(2): 471-4, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21796216

RESUMO

Cystic fibrosis (CF) is a common fatal genetic disorder with mortality most often resulting from microbial infections of the lungs. Culture-independent studies of CF-associated microbial communities have indicated that microbial diversity in the CF airways is much higher than suggested by culturing alone. However, these studies have relied on indirect methods to sample the CF lung such as expectorated sputum and bronchoalveolar lavage (BAL). Here, we characterize the diversity of microbial communities in tissue sections from anatomically distinct regions of the CF lung using barcoded 16S amplicon pyrosequencing. Microbial communities differed significantly between different areas of the lungs, and few taxa were common to microbial communities in all anatomical regions surveyed. Our results indicate that CF lung infections are not only polymicrobial, but also spatially heterogeneous suggesting that treatment regimes tailored to dominant populations in sputum or BAL samples may be ineffective against infections in some areas of the lung.


Assuntos
Biodiversidade , Fibrose Cística/microbiologia , Pulmão/microbiologia , Análise por Conglomerados , Humanos , Escarro/microbiologia
15.
J Clin Microbiol ; 49(1): 263-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21084517

RESUMO

Monitoring the emergence and transmission of Pseudomonas aeruginosa strains among cystic fibrosis (CF) patients is important for infection control in CF centers internationally. A recently developed multilocus sequence typing (MLST) scheme is used for epidemiologic analyses of P. aeruginosa outbreaks; however, little is known about its suitability for isolates from CF patients compared with that of pulsed-field gel electrophoresis (PFGE) and enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). As part of a prevalence study of P. aeruginosa strains in Australian CF clinics, we compared the discriminatory power and concordance of ERIC-PCR, PFGE, and MLST among 93 CF sputum and 11 control P. aeruginosa isolates. PFGE and MLST analyses were also performed on 30 paired isolates collected 85 to 354 days apart from 30 patients attending two CF centers separated by 3,600 kilometers in order to detect within-host evolution. Each of the three methods displayed high levels of concordance and discrimination; however, overall lower discrimination was seen with ERIC-PCR than with MLST and PFGE. Analysis of the 50 ERIC-PCR types yielded 54 PFGE types, which were related by ≤ 6 band differences, and 59 sequence types, which were classified into 7 BURST groups and 42 singletons. MLST also proved useful for detecting novel and known strains and for inferring relatedness among unique PFGE types. However, 47% of the paired isolates produced PFGE patterns that within 1 year differed by one to five bands, whereas with MLST all paired isolates remained identical. MLST thus represents a categorical analysis tool with resolving power similar to that of PFGE for typing P. aeruginosa. Its focus on highly conserved housekeeping genes is particularly suited for long-term clinical monitoring and detecting novel strains.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Fibrose Cística/complicações , Tipagem de Sequências Multilocus/métodos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/genética , Escarro/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise por Conglomerados , Genótipo , Humanos , Pessoa de Meia-Idade , Epidemiologia Molecular/métodos , Pseudomonas aeruginosa/isolamento & purificação , Adulto Jovem
16.
Genetics ; 183(3): 1041-53, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19704015

RESUMO

The capacity for phenotypic evolution is dependent upon complex webs of functional interactions that connect genotype and phenotype. Wrinkly spreader (WS) genotypes arise repeatedly during the course of a model Pseudomonas adaptive radiation. Previous work showed that the evolution of WS variation was explained in part by spontaneous mutations in wspF, a component of the Wsp-signaling module, but also drew attention to the existence of unknown mutational causes. Here, we identify two new mutational pathways (Aws and Mws) that allow realization of the WS phenotype: in common with the Wsp module these pathways contain a di-guanylate cyclase-encoding gene subject to negative regulation. Together, mutations in the Wsp, Aws, and Mws regulatory modules account for the spectrum of WS phenotype-generating mutations found among a collection of 26 spontaneously arising WS genotypes obtained from independent adaptive radiations. Despite a large number of potential mutational pathways, the repeated discovery of mutations in a small number of loci (parallel evolution) prompted the construction of an ancestral genotype devoid of known (Wsp, Aws, and Mws) regulatory modules to see whether the types derived from this genotype could converge upon the WS phenotype via a novel route. Such types-with equivalent fitness effects-did emerge, although they took significantly longer to do so. Together our data provide an explanation for why WS evolution follows a limited number of mutational pathways and show how genetic architecture can bias the molecular variation presented to selection.


Assuntos
Adaptação Fisiológica/genética , Evolução Molecular , Variação Genética , Pseudomonas fluorescens/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genótipo , Modelos Genéticos , Mutação , Fenótipo
17.
BMC Microbiol ; 8: 7, 2008 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-18194565

RESUMO

BACKGROUND: Pyoverdines (PVDs) are high affinity siderophores, for which the molecular mechanisms of biosynthesis, uptake and regulation have been extensively studied in Pseudomonas aeruginosa PAO1. However, the extent to which this regulatory model applies to other pseudomonads is unknown. Here, we describe the results of a genomic, genetic and structural analysis of pyoverdine-mediated iron uptake by the plant growth-promoting bacterium P. fluorescens SBW25. RESULTS: In silico analysis of the complete, but un-annotated, SBW25 genome sequence identified 31 genes putatively involved in PVD biosynthesis, transport or regulation, which are distributed across seven different regions of the genome. PVD gene iron-responsiveness was tested using 'lacZ fusions to five PVD loci, representative of structural and regulatory genes. Transcription of all fusions increased in response to iron starvation. In silico analyses suggested that regulation of fpvR (which is predicted to encode a cytoplasmic membrane-spanning anti-sigma factor) may be unique. Transcriptional assays using gene expression constructs showed that fpvR is positively regulated by FpvI (an extracytoplasmic family (ECF) sigma factor), and not directly by the ferric uptake regulator (Fur) as for PAO1. Deletion of pvdL, encoding a predicted non-ribosomal peptide synthetase (NRPS) involved in PVD chromophore biosynthesis confirmed the necessity of PvdL for PVD production and for normal growth in iron-limited media. Structural analysis of the SBW25 PVD shows a partly cyclic seven residue peptide backbone, identical to that of P. fluorescens ATCC13525. At least 24 putative siderophore receptor genes are present in the SBW25 genome enabling the bacterium to utilize 19 structurally distinct PVDs from 25 different Pseudomonas isolates. CONCLUSION: The genome of P. fluorescens SBW25 contains an extensively dispersed set of PVD genes in comparison to other sequenced Pseudomonas strains. The PAO1 PVD regulatory model, which involves a branched Fpv signaling pathway, is generally conserved in SBW25, however there is a significant difference in fpvR regulation. SBW25 produces PVD with a partly cyclic seven amino acid residue backbone, and is able to utilize a wide variety of exogenous PVDs.


Assuntos
Regulação Bacteriana da Expressão Gênica , Ferro/metabolismo , Oligopeptídeos/biossíntese , Oligopeptídeos/química , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Fusão Gênica Artificial , Proteínas da Membrana Bacteriana Externa/genética , Vias Biossintéticas/genética , Biologia Computacional , Meios de Cultura/química , Deleção de Genes , Genes Bacterianos , Genes Reporter , Genoma Bacteriano , Oligopeptídeos/genética , Pseudomonas fluorescens/crescimento & desenvolvimento , Receptores de Superfície Celular/genética , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
18.
Mol Plant Microbe Interact ; 20(5): 581-8, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17506335

RESUMO

The genome of the plant-colonizing bacterium Pseudomonas fluorescens SBW25 possesses a putative copper-transporting P1-type ATPase (CueA) that is induced on the plant surfaces. Using a chromosomally-integrated cueA-lacZ fusion, we show that transcription of cueA can be induced (in vitro) by ions of copper, silver, gold, and mercury. To investigate the biological significance of cueA, a nonpolar cueA deletion mutant (SBW25 delta cueA) was constructed. This mutant strain displayed a twofold reduction in its tolerance to copper compared with the wild-type strain; however, no change was observed in the sensitivity of the mutant strain to silver, gold, or mercury ions. To obtain insight into the ecological significance of cueA, the competitive ability of SBW25 delta cueA was determined relative to wild-type SBW25 in three environments (none contained added copper): minimal M9 medium, the root of sugar beet (Beta vulgaris), and the root of pea (Pisum sativum). Results showed that the fitness of SBW25 delta cueA was not different from the wild type in laboratory medium but was compromised in the two plant environments. Taken together, these data demonstrate a functional role for CueA in copper homeostasis and reveal an ecologically significant contribution to bacterial fitness in the plant rhizosphere. They also suggest that copper ions accumulate on plant surfaces.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Cobre/farmacologia , Plantas/microbiologia , Pseudomonas fluorescens/metabolismo , Adenosina Trifosfatases/genética , Beta vulgaris/microbiologia , Proteínas de Transporte de Cátions/genética , Cobre/metabolismo , ATPases Transportadoras de Cobre , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Ouro/farmacologia , Homeostase , Mercúrio/farmacologia , Mutação , Pisum sativum/microbiologia , Raízes de Plantas/microbiologia , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/patogenicidade , Prata/farmacologia , Virulência/genética
19.
Nature ; 446(7134): 436-9, 2007 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-17377582

RESUMO

Diversity in biological communities is a historical product of immigration, diversification and extinction, but the combined effect of these processes is poorly understood. Here we show that the order and timing of immigration controls the extent of diversification. When an ancestral bacterial genotype was introduced into a spatially structured habitat, it rapidly diversified into multiple niche-specialist types. However, diversification was suppressed when a niche-specialist type was introduced before, or shortly after, introduction of the ancestral genotype. In contrast, little suppression occurred when the same niche specialist was introduced relatively late. The negative impact of early arriving immigrants was attributable to the historically sensitive outcome of interactions involving neutral competition and indirect facilitation. Ultimately, the entire boom-and-bust dynamics of adaptive radiation were altered. These results demonstrate that immigration and diversification are tightly linked processes, with small differences in immigration history greatly affecting the evolutionary emergence of diversity.


Assuntos
Evolução Biológica , Meio Ambiente , Variação Genética , Modelos Biológicos , Pseudomonas fluorescens/fisiologia , Biodiversidade , Contagem de Colônia Microbiana , Comportamento Competitivo/fisiologia , Variação Genética/genética , Genótipo , Mutação/genética , Pseudomonas fluorescens/genética , Seleção Genética , Fatores de Tempo
20.
Proc Biol Sci ; 272(1570): 1385-91, 2005 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16006335

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen that colonizes the lungs of cystic fibrosis (CF) patients. CF lungs often contain a diverse range of P. aeruginosa phenotypes, some of which are likely to contribute to the persistence of infection, yet the causes of diversity are unclear. While the ecological heterogeneity of the lung environment and therapeutic regimes are probable factors, a role for parasitic bacteriophage cannot be ruled out. Parasites have been implicated as a key ecological variable driving the evolution of diversity in host populations. PP7 drove cycles of morphological diversification in host populations of P. aeruginosa due to the de novo evolution of small-rough colony variants that coexisted with large diffuse colony morph bacteria. In the absence of phage, bacteria only displayed the large diffuse colony morphology of the wild-type. Further assays revealed there to be two distinct types of resistant bacteria; these had very different ecological phenotypes, yet each carried a cost of resistance.


Assuntos
Leviviridae/fisiologia , Fenótipo , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/virologia , Contagem de Colônia Microbiana , Meio Ambiente , Fímbrias Bacterianas/virologia , Movimento/fisiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA