Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Trop ; 258: 107357, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39122101

RESUMO

The Siddha system of medicine (SSM) is the oldest medical science practised in the ancient period of the southern part of India and Sri Lanka. Many formulations were described for wound healing in the SSM, with specific diagnostic differentiation in the Siddha literature. Most preparations for wound healing were available in the form of oil-based formulations, especially for external usage. Mathan tailam (MT) and Mahamegarajanga tailam (MMRT) have been used by Siddha physicians and traditional practitioners to treat wounds. Mathan tailam is a popular regimen for skin lacerations, burns, skin infections, diabetic wounds, and dermatitis. Mahamegarajanga tailam has long been used by traditional vaidyars to treat cuts and burns. Both MT and MMRT are clinically well-appreciated drugs for wound healing and need to be studied for their mechanisms of action for scientific documentation. In an in vivo study on albino rats -excisional wound model, the histopathological changes, histo-immune response, biomarker analysis, and mRNA expression were studied and analysed. Wounds treated with MT and MMRT healed faster (p < 0.05) than the untreated group (CNT). Histological investigation showed rapid re-epithelialization, dense collagen deposition, increased enzymatic antioxidant activities and decreased lipid peroxidation in the MT and MMRT groups. mRNA expression reveals MT and MMRT-treated tissues able to induce convergent cell motility in wound space. Our study for the first time provides strong in vivo experimental evidence that Mathan tailam and Mahamegarajanga tailam play a crucial role in promoting skin tissue wound healing through IL-6/VEGF/TNF-α mediated mechanisms. Traditional practices continue to teach us valuable lessons, as seen by their continuous use in their locality for years.


Assuntos
Interleucina-10 , Ratos Wistar , Transdução de Sinais , Fator de Necrose Tumoral alfa , Fator A de Crescimento do Endotélio Vascular , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Interleucina-10/genética , Interleucina-10/metabolismo , Masculino , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Pele/patologia , Pele/lesões , Pele/efeitos dos fármacos
2.
Mol Cell Oncol ; 11(1): 2326699, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505173

RESUMO

Colorectal cancer (CRC) is a heterogeneous disease that requires new diagnostic and prognostic markers. Integrated bioinformatics approach to identify novel therapeutic targets associated with CRC. Using GEO2R identified DEGs in CRC, and Funrich software facilitated the visualization of DEGs through Venn diagrams. From a total of 114 enhanced DEGs, potential hub genes were further filtered based on their nodal strength and edges using STRING database. To gain insights into the functional roles of these hub genes, gene ontology and pathway enrichment were conducted thorough g: profiler web server. Subsequently, overall survival plots from GEPIA and oncogenic predictive functions like mRNA expressions for stages and nodal metastasis were employed to identify hub genes in CRC patient samples. Additionally, the cBioPortal and HPA databases also revealed genetic alterations and expression levels in these hub genes in CRC patients, further supporting their involvement in colorectal cancer. Gene expression by RT-PCR shows upregulation of hub genes in HT-29 cells. Finally, our integrated bioinformatic analysis revealed that ABCE1, AURKA, HSPD1, PHKA1, CDK4, and YWHAE as hub genes with potential oncogenic roles in CRC. These genes hold promise as diagnostic and prognostic markers for colorectal tumorigenesis, providing insights into targeted therapies for improved patient outcomes.

3.
Int J Biol Macromol ; 265(Pt 1): 130746, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467219

RESUMO

The burgeoning field of starch-based nanomaterials in biomedical applications has perceived notable progressions, with a particular emphasis on their pivotal role in precision drug delivery and the inhibition of tumor growth. The complicated challenges in current biomedical research require innovative approaches for improved therapeutic outcomes, prompting an exploration into the possible of starch-based nanomaterials. The conceptualization of this review emerged from recognizing the need for a comprehensive examination of the structural attributes, versatile properties, and mechanisms underlying the efficiency of starch-based nanomaterials in inhibiting tumor growth and enabling targeted drug delivery. This review delineates the substantial growth in utilizing starch-based nanomaterials, elucidating their small size, high surface-volume ratio, and biocompatibility, predominantly emphasizing their possible to actively recognize cancer cells, deliver anticancer drugs, and combat tumors efficiently. The investigation of these nanomaterials encompasses to improving biocompatibility and targeting specific tissues, thereby contributing to the evolving landscape of precision medicine. The review accomplishes by highlighting the auspicious strategies and modern developments in the field, envisioning a future where starch-based nanomaterials play a transformative role in molecular nanomaterials, evolving biomedical sciences. The translation of these advancements into clinical applications holds the potential to revolutionize targeted drug delivery and expand therapeutic outcomes in the realm of precision medicine.


Assuntos
Antineoplásicos , Nanoestruturas , Neoplasias , Humanos , Nanoestruturas/química , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Medicina de Precisão
4.
Noncoding RNA Res ; 8(3): 376-384, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37250455

RESUMO

Oral cancer is the most debilitating disease which affects the orderly life of a human. With so much advancement in research and technology, the average life expectancy of an individual with oral cancer appears to be about 5 years. The changing trend in incidence of oral cancer among young individuals and women without tobacco habits are ascending. Non habit related oral cancer are taking centre stage and multiple factors which induce complex biology are associated in such scenarios. To decipher the aetiology and to understand the process, these cancerous conditions are to be studied at molecular level. Saliva, the most non-invasively obtained body fluid are assessed for biomarkers exclusively in liquid biopsy. This fluid gives a huge platform to study number of molecules associated with oral cancer. Non coding RNAs are transcripts with no protein coding function. They are gaining more importance in recent times. Long noncoding RNA, microRNA are major types of noncoding transcriptome that influences in progression of oral cancer. They seem to play an important role in health and disease. Apart from these, circulating tumour cells, exosomes, extracellular vesicles, antigens and other proteins can be studied from saliva. This review is aimed to update the knowledge on current biomarkers in saliva associated with oral cancer and their epigenetic role in disease progression as well recent advances in detecting these markers to identify the stage of the disease, which will help in deciding the treatment protocol.

5.
Bioinformation ; 18(3): 80-83, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518142

RESUMO

Diabetes mellitus is a group of metabolic disorders that has risen to become the third most common cause in humans in recent years. The development of new bioactive substances from natural sources is a relatively new area. Flavonoids are believed to have a variety of beneficial properties in nature, including anti-inflammatory, antimicrobial, anticancer, antioxidant, neuroprotective, and anti-HIV properties. 15 naturally occurring flavonoids docked with the selected target aldose reductase. We report the optimal binding of Acumitin, Agathisflavone, Agehoustin B, and alpha-Toxicarol with aldose reductase for further consideration in drug discovery for T2DM.

6.
Nutrients ; 14(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35889889

RESUMO

Diabetes mellitus has become a troublesome and increasingly widespread condition. Treatment strategies for diabetes prevention in high-risk as well as in affected individuals are largely attributed to improvements in lifestyle and dietary control. Therefore, it is important to understand the nutritional factors to be used in dietary intervention. A decreased risk of diabetes is associated with daily intake of millet-based foods. Pearl millet is a highly nutritious grain, nutritionally comparable and even superior in calories, protein, vitamins, and minerals to other large cereals, although its intake is confined to lower income segments of society. Pearl millet contains phenolic compounds which possess antidiabetic activity. Thus, it can be used to prepare a variety of food products for diabetes mellitus. Moreover, it also has many health benefits, including combating diabetes mellitus, cancer, cardiovascular conditions, decreasing tumour occurrence, lowering blood pressure, heart disease risk, cholesterol, and fat absorption rate. Therefore, the current review addresses the role of pearl millet in managing diabetes.


Assuntos
Diabetes Mellitus , Pennisetum , Digestão , Grão Comestível/química , Humanos , Pennisetum/metabolismo , Fenóis/análise
7.
Chem Biol Interact ; 358: 109885, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35305976

RESUMO

Hyperglycemia, hyperlipidemia, and atherosclerotic lesions may cause inflammation, which leads to chemokine production and changes in vascular responses. Hyperglycemia can impair normal protein folding by producing reactive oxygen species (ROS) and interacting with various signaling molecules, resulting in the activation of ER stress responses, that stimulates NF-kB, which regulates the expression of numerous genes involved in inflammation and vascular remodeling. Our previous studies have shown that diosgenin has a protective effect against streptozotocin (STZ) - induced oxidative damage in rat aorta. However, the therapeutic role of diosgenin on iRhom2/TACE signaling which has primarily been linked to the endoplasmic reticulum (ER)-stress induced inflammation is unknown. Diosgenin was administered (40 mg/kg b. wt, orally, for 4 weeks) to STZ-induced male albino rats. Fasting plasma glucose, blood pressure, nitrite level, lipid profile, and lipoprotein were assessed. Serum insulin and pro-inflammatory markers were analyzed using ELISA, mRNA and protein expression of iRhom2/TACE signaling molecules were analyzed using RT-PCR and western blotting analysis respectively. In silico study was also performed to find out the possible binding affinity of diosgenin with the ER stress signaling molecules. Through regulation of the iRhom2/TACE signaling molecules, diosgenin lowered dyslipidemia, hypertension, and pro-inflammatory cytokines (TNF-α, IL-1, IL-6, and IL-4) in the aorta of STZ induced diabetic rats. Results of molecular docking analysis also confirmed the potential binding interaction with iRhom2/TACE and TNF- α. These in silico and in vivo results indicated that a change in lipid profile and hypertension led to diabetes-related inflammation by promoting ER stress and, as a result, accelerating the aorta by generating proinflammatory cytokines and lipid deposition. This study concludes that diosgenin attenuates ER stress-induced inflammation in diabetic rat aorta by modulating the expression of pro-inflammatory, iRhom2/TACE mediated mechanism and hence diosgenin can be a therapeutic drug for the treatment of diabetes-induced inflammation.


Assuntos
Diabetes Mellitus Experimental , Diosgenina , Estresse do Retículo Endoplasmático , Hiperglicemia , Inflamação , Proteína ADAM17/metabolismo , Animais , Aorta/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Experimental/complicações , Diosgenina/farmacologia , Diosgenina/uso terapêutico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hiperglicemia/complicações , Hipertensão , Inflamação/tratamento farmacológico , Inflamação/etiologia , Lipídeos , Masculino , Simulação de Acoplamento Molecular , Estresse Oxidativo , Ratos , Estreptozocina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
8.
Molecules ; 27(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35268696

RESUMO

Natural products in the form of functional foods have become increasingly popular due to their protective effects against life-threatening diseases, low risk of adverse effects, affordability, and accessibility. Plant components such as phytosterol, in particular, have drawn a lot of press recently due to a link between their consumption and a modest incidence of global problems, such as Type 2 Diabetes mellitus (T2DM), cancer, and cardiovascular disease. In the management of diet-related metabolic diseases, such as T2DM and cardiovascular disorders, these plant-based functional foods and nutritional supplements have unquestionably led the market in terms of cost-effectiveness, therapeutic efficacy, and safety. Diabetes mellitus is a metabolic disorder categoriszed by high blood sugar and insulin resistance, which influence major metabolic organs, such as the liver, adipose tissue, and skeletal muscle. These chronic hyperglycemia fallouts result in decreased glucose consumption by body cells, increased fat mobilisation from fat storage cells, and protein depletion in human tissues, keeping the tissues in a state of crisis. In addition, functional foods such as phytosterols improve the body's healing process from these crises by promoting a proper physiological metabolism and cellular activities. They are plant-derived steroid molecules having structure and function similar to cholesterol, which is found in vegetables, grains, nuts, olive oil, wood pulp, legumes, cereals, and leaves, and are abundant in nature, along with phytosterol derivatives. The most copious phytosterols seen in the human diet are sitosterol, stigmasterol, and campesterol, which can be found in free form, as fatty acid/cinnamic acid esters or as glycosides processed by pancreatic enzymes. Accumulating evidence reveals that phytosterols and diets enriched with them can control glucose and lipid metabolism, as well as insulin resistance. Despite this, few studies on the advantages of sterol control in diabetes care have been published. As a basis, the primary objective of this review is to convey extensive updated information on the possibility of managing diabetes and associated complications with sterol-rich foods in molecular aspects.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Fitosteróis , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dieta , Humanos , Fitosteróis/farmacologia , Fitosteróis/uso terapêutico , Esteróis
9.
Bioinorg Chem Appl ; 2022: 4464056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35132312

RESUMO

Bioactive compound (5E,7E)-4,5,6 trihydroxy-3-(hydroxymethyl)tetrahydro-2H-pyran-2-ylheptadeca-5,7-dienoate (compound 2) was isolated from Euclea crispa (E. crispa) by the chromatographic methods. Further, the compound was confirmed by spectroscopic techniques such as ultraviolet-visible (UV/Vis) spectrometer, Fourier transform infrared (FTIR) spectrometer, and 1H and 13C nuclear magnetic resonance (NMR). Compound 2 exhibited a significant antioxidant activity with IC50 values. It restrained the auxesis of HO-8910 cells in a shot-dependent mode. CXCR4, HER2, and Akt proteins involved in cell proliferation and metastasis were found to be significantly reduced (p < 0.05). The protein that is responsible for the death of cells (Bcl-2 and Bcl-xL) was reduced (p < 0.05), while the protein expression of p53 and caspase-9 was increased (p < 0.05) in compound 2-treated HO-8910 cells. The results of molecular docking analysis showed the binding affinity with CXCR4 and HER2. Thus, compound 2 can serve as a promising chemotherapeutic agent for the intervention of ovarian cancer. The findings of this study conclude that compound 2 from E. crispa might work as a potential antioxidative and chemotherapeutic agent. The in vivo studies and attempts will pave way for this compound to be an effective drug hereafter.

10.
Molecules ; 26(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34946771

RESUMO

Type-2 diabetes mellitus (T2DM), the leading global health burden of this century majorly develops due to obesity and hyperglycemia-induced oxidative stress in skeletal muscles. Hence, developing novel drugs that ameliorate these pathological events is an immediate priority. The study was designed to analyze the possible role of Stevioside, a characteristic sugar from leaves of Stevia rebaudiana (Bertoni) on insulin signaling molecules in gastrocnemius muscle of obesity and hyperglycemia-induced T2DM rats. Adult male Wistar rats rendered diabetic by administration of high fat diet (HFD) and sucrose for 60 days were orally administered with SIT (20 mg/kg/day) for 45 days. Various parameters were estimated including fasting blood glucose (FBG), serum lipid profile, oxidative stress markers, antioxidant enzymes and expression of insulin signaling molecules in diabetic gastrocnemius muscle. Stevioside treatment improved glucose and insulin tolerances in diabetic rats and restored their elevated levels of FBG, serum insulin and lipid profile to normalcy. In diabetic gastrocnemius muscles, Setvioside normalized the altered levels of lipid peroxidase (LPO), hydrogen peroxide (H2O2) and hydroxyl radical (OH*), antioxidant enzymes (CAT, SOD, GPx and GSH) and molecules of insulin signaling including insulin receptor (IR), insulin receptor substrate-1 (IRS-1) and Akt mRNA levels. Furthermore, Stevioside enhanced glucose uptake (GU) and oxidation in diabetic muscles by augmenting glucose transporter 4 (GLUT 4) synthesis very effectively in a similar way to metformin. Results of molecular docking analysis evidenced the higher binding affinity with IRS-1 and GLUT 4. Stevioside effectively inhibits oxidative stress and promotes glucose uptake in diabetic gastrocnemius muscles by activating IR/IRS-1/Akt/GLUT 4 pathway. The results of the in silico investigation matched those of the in vivo study. Hence, Stevioside could be considered as a promising phytomedicine to treat T2DM.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diterpenos do Tipo Caurano/farmacologia , Transportador de Glucose Tipo 4/metabolismo , Glucosídeos/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Masculino , Ratos , Ratos Wistar
11.
Antioxidants (Basel) ; 10(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34943006

RESUMO

Diabetes is one of the most significant health issues across the world. People identified with diabetes are more vulnerable to various infections and are at a greater risk of developing cardiovascular diseases. The plant-based food we consume often contains many sterol-based bioactive compounds. It is well documented that these compounds could effectively manage the processes of insulin metabolism and cholesterol regulation. Insulin resistance followed by hyperglycemia often results in oxidative stress level enhancement and increased reactive oxygen species production. At the molecular level, these changes induce apoptosis in pancreatic cells and hence lead to insulin insufficiency. Studies have proved that plant sterols can lower inflammatory and oxidative stress damage connected with DNA repair mechanisms. The effective forms of phyto compounds are polyphenols, terpenoids, and thiols abundant in vegetables, fruits, nuts, and seeds. The available conventional drug-based therapies for the prevention and management of diabetes are time-consuming, costly, and with life-threatening side effects. Thereby, the therapeutic management of diabetes with plant sterols available in our daily diet is highly welcome as there are no side effects. This review intends to offer an overview of the present scenario of the anti-diabetic compounds from food ingredients towards the therapeutic beneficial against diabetes.

12.
Molecules ; 26(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917607

RESUMO

ß-sitosterol (SIT), the most abundant bioactive component of vegetable oil and other plants, is a highly potent antidiabetic drug. Our previous studies show that SIT controls hyperglycemia and insulin resistance by activating insulin receptor and glucose transporter 4 (GLUT-4) in the adipocytes of obesity induced type 2 diabetic rats. The current research was undertaken to investigate if SIT could also exert its antidiabetic effects by circumventing adipocyte induced inflammation, a key driving factor for insulin resistance in obese individuals. Effective dose of SIT (20 mg/kg b.wt) was administered orally for 30 days to high fat diet and sucrose induced type-2 diabetic rats. Metformin, the conventionally used antidiabetic drug was used as a positive control. Interestingly, SIT treatment restores the elevated serum levels of proinflammatory cytokines including leptin, resistin, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) to normalcy and increases anti-inflammatory adipocytokines including adiponectin in type 2 diabetic rats. Furthermore, SIT decreases sterol regulatory element binding protein-1c (SREBP-1c) and enhances Peroxisome Proliferator-activated receptor-γ (PPAR-γ) gene expression in adipocytes of diabetic rats. The gene and protein expression of c-Jun-N-terminal kinase-1 (JNK1), inhibitor of nuclear factor kappa-B kinase subunit beta (IKKß) and nuclear factor kappa B (NF-κB) were also significantly attenuated in SIT treated groups. More importantly, SIT acts very effectively as metformin to circumvent inflammation and insulin resistance in diabetic rats. Our results clearly show that SIT inhibits obesity induced insulin resistance by ameliorating the inflammatory events in the adipose tissue through the downregulation of IKKß/NF-κB and c-Jun-N-terminal kinase (JNK) signaling pathway.


Assuntos
Adipócitos/metabolismo , Diabetes Mellitus Tipo 2/complicações , Regulação para Baixo , Quinase I-kappa B/metabolismo , Inflamação/tratamento farmacológico , Resistência à Insulina , Obesidade/complicações , Sitosteroides/uso terapêutico , Adipócitos/efeitos dos fármacos , Adipocinas/sangue , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Peso Corporal/efeitos dos fármacos , Citocinas/sangue , Citocinas/genética , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica , Regulação para Baixo/efeitos dos fármacos , Comportamento Alimentar , Inflamação/sangue , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Obesidade/sangue , PPAR gama/genética , PPAR gama/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Sitosteroides/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Sacarose , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
13.
Phytother Res ; 35(6): 3059-3077, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33559280

RESUMO

Chemotherapy and radiotherapy are mainstay treatments for cancer patients. However, their clinical outcomes are highly limited by the resistance of malignant tumors to these therapies and the incurrence of serious damages in vital organs. This in turn necessitates the development of adjunct drugs that overcomes chemo/radioresistance in refractory cancers and protects vital organs from the cytotoxic effects of cancer therapies. In recent years, Berberine (BBR), a natural isoquinoline alkaloid has garnered more attention due to its potent chemosensitizing and chemoprotective properties. BBR effectively sensitizes refractory cancers to chemotherapy and radiotherapy by ameliorating the diverse events underlying therapy resistance. Furthermore, it protects the heart, liver, lungs, and kidneys from severe damages caused by these therapies. In this review, we discuss the molecular mechanisms underlying the chemo/radiosensitizing and chemo/radioprotective potential of BBR during cancer treatment. Also, we highlight the limitations that hamper the clinical application of BBR as an adjunct drug and how novel innovations have been made in recent years to circumvent these challenges.


Assuntos
Antineoplásicos/farmacologia , Berberina/farmacologia , Neoplasias/tratamento farmacológico , Animais , Humanos
14.
Bioinformation ; 17(7): 705-709, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35283583

RESUMO

It is of interest to document the inhibition of A2780 cell proliferation using Mollugo nudicaulis Lam.(M.nudicaulis) extract by MTT assay and by monitoring the CXCR4 and HER2 expression through RT-PCR analysis. Results shown that the n-hexane extract of M.nudicaulis have anticancer activity IC50 values of 32.46±0.92 µg/mL on A2780 cell lines. It is further found that the CXCR4 and HER2 mRNA and protein expression were significantly reduced in M.nudicaulis treated A2780 cell lines. Thus, the n-hexane extract of M.nudicaulis is a natural source of bioactive compounds as potential anticancer agents.

15.
Bioinformation ; 16(7): 555-560, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32994681

RESUMO

Oral cancer is linked with apoptotic proteins such as Bcl-xl, Bcl-2 and Mcl-1. Therefore it is of interest to document the molecular docking analysis of capsaicin (principle present in the Capsicum annum) with apoptotic proteins in this context. We report the molecular binding features of capsaicin with apoptotic proteins such as Bcl-xl, Bcl-2 and Mcl-1 for further consideration.

16.
Eur J Pharmacol ; 873: 173004, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32045603

RESUMO

In our previous study, we have shown that ß-sitosterol (SIT) enhances glycemic control by increasing the activation of insulin receptor (IR) and glucose transporter 4 (GLUT4) proteins in adipose tissue. However, the possible role of SIT on the regulation of post-receptor insulin signal transduction is not known. Hence, the study was aimed to assess the effects of SIT on IRS-1/Akt mediated insulin signaling molecules in high-fat diet and sucrose induced type-2 diabetic rats. An oral effective dose of SIT (20 mg/kg b.wt) was given for 30 days to high fat-fed type-2 diabetic rats to find out whether SIT regulates IRS-1/Akt pathway of insulin signaling. The results showed that SIT attenuated the insulin receptor substrate-1 serine phosphorylation (p-IRS-1Ser636) (P = 0.0003). However, it up-regulated the mRNA expression of IR (P = 0.0036) and post-receptor insulin signaling molecules such as IRS-1 (P < 0.0001), ß-arrestin-2 (P < 0.0058), Akt (P = 0.0008), AS160 (P = 0.0030) and GLUT4 (P < 0.0001) with a concomitant increase in the levels of IRS-1(P < 0.0001), p-IRS1-1Tyr632 (P = 0.0014), Akt (P < 0.0001), p-AktSer473/Thr308 (P = 0.0006; P < 0.0001), AS160 and p-AS160Thr642 (P < 0.0001) compared with type-2 diabetic rats. In Silico analysis was also performed and it showed that SIT possesses the greater binding affinity with ß-arrestin-2, c-Src, and IRS-1 as well as Akt proteins and proved to attenuate insulin resistance as this study coincides with in vivo findings. Our present study clearly shows that SIT attenuates high fat diet-induced detrimental changes in adipose tissue. Therefore, it is concluded from the present findings that, SIT could be used as potential therapeutic phytomedicine for the management of type-2 diabetes.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Proteínas Substratos do Receptor de Insulina/efeitos dos fármacos , Resistência à Insulina , Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sitosteroides/farmacologia , Sacarose/farmacologia , Animais , Simulação por Computador , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica , Masculino , Modelos Moleculares , Simulação de Dinâmica Molecular , Ratos , Ratos Wistar , beta-Arrestina 2/efeitos dos fármacos , beta-Arrestina 2/metabolismo , Quinases da Família src/antagonistas & inibidores
17.
Bioinformation ; 16(11): 923-928, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34803268

RESUMO

It is of interest to document the molecular docking analysis of phytocompounds from Andrographis paniculata binding with protein NOTCH1 in the Notch-signaling pathway in the context of cancer. Hence, we document the binding features of neoandrographolide, 14-deoxyandrographolide, androgapholide and andrograpanin with proteins in the notch-signaling pathway for further consideration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA