Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
JCI Insight ; 9(6)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358827

RESUMO

Mutations in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene lead to CF, a life-threating autosomal recessive genetic disease. While recently approved Trikafta dramatically ameliorates CF lung diseases, there is still a lack of effective medicine to treat CF-associated liver disease (CFLD). To address this medical need, we used a recently established CF rabbit model to test whether sotagliflozin, a sodium-glucose cotransporter 1 and 2 (SGLT1/2) inhibitor drug that is approved to treat diabetes, can be repurposed to treat CFLD. Sotagliflozin treatment led to systemic benefits to CF rabbits, evidenced by increased appetite and weight gain as well as prolonged lifespan. For CF liver-related phenotypes, the animals benefited from normalized blood chemistry and bile acid parameters. Furthermore, sotagliflozin alleviated nonalcoholic steatohepatitis-like phenotypes, including liver fibrosis. Intriguingly, sotagliflozin treatment markedly reduced the otherwise elevated endoplasmic reticulum stress responses in the liver and other affected organs of CF rabbits. In summary, our work demonstrates that sotagliflozin attenuates liver disorders in CF rabbits and suggests sotagliflozin as a potential drug to treat CFLD.


Assuntos
Fibrose Cística , Hepatopatias , Animais , Coelhos , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Hepatopatias/complicações , Glicosídeos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/complicações
2.
PNAS Nexus ; 2(1): pgac306, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36712930

RESUMO

Cystic fibrosis (CF) is an autosomal recessive genetic disease affecting multiple organs. Approximately 30% CF patients develop CF-related liver disease (CFLD), which is the third most common cause of morbidity and mortality of CF. CFLD is progressive, and many of the severe forms eventually need liver transplantation. The mechanistic studies and therapeutic interventions to CFLD are unfortunately very limited. Utilizing the CRISPR/Cas9 technology, we recently generated CF rabbits by introducing mutations to the rabbit CF transmembrane conductance regulator (CFTR) gene. Here we report the liver phenotypes and mechanistic insights into the liver pathogenesis in these animals. CF rabbits develop spontaneous hepatobiliary lesions and abnormal biliary secretion accompanied with altered bile acid profiles. They exhibit nonalcoholic steatohepatitis (NASH)-like phenotypes, characterized by hepatic inflammation, steatosis, and fibrosis, as well as altered lipid profiles and diminished glycogen storage. Mechanistically, our data reveal that multiple stress-induced metabolic regulators involved in hepatic lipid homeostasis were up-regulated in the livers of CF-rabbits, and that endoplasmic reticulum (ER) stress response mediated through IRE1α-XBP1 axis as well as NF-κB- and JNK-mediated inflammatory responses prevail in CF rabbit livers. These findings show that CF rabbits manifest many CFLD-like phenotypes and suggest targeting hepatic ER stress and inflammatory pathways for potential CFLD treatment.

3.
Physiol Rep ; 10(21): e15508, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36377055

RESUMO

Angiotensin II (Ang II)-dependent stimulation of the AT1 receptor in proximal tubules increases sodium reabsorption and blood pressure. Reabsorption is driven by the Na,K-pump that is acutely stimulated by Ang II, which requires phosphorylation of serine-938 (S938). This site is present in humans and only known to phosphorylated by PKA. Yet, activation of AT1 decreases cAMP required to activate PKA and inhibiting PKA does not block Ang II-dependent phosphorylation of S938. We tested the hypothesis that Ang II-dependent activation is mediated via increased phosphorylation at S938 through a PI3K/AKT-dependent pathway. Experiments were conducted using opossum kidney cells, a proximal tubule cell line, stably co-expressing the AT1 receptor and either the wild-type (α-1.wild-type) or an alanine substituted (α-1.S938A) form of rat kidney Na,K-pump. A 5-min exposure to 10 pM Ang II significantly activated Na,K-pump activity (56%) measured as short-circuit current across polarized α-1.wild-type cells. Wortmannin, at a concentration that selectively inhibits PI3K, blocked that Ang II-dependent activation. Ang II did not stimulate Na,K-pump activity in α-1.S938A cells. Ang II at 10 and 100 pM increased phosphorylation at S938 in α-1.wild-type cells measured in whole cell lysates. The increase was inhibited by wortmannin plus H-89, an inhibitor of PKA, not by either alone. Ang II activated AKT inhibited by wortmannin, not H-89. These data support our hypothesis and show that Ang II-dependent phosphorylation at S938 stimulates Na,K-pump activity and transcellular sodium transport.


Assuntos
Angiotensina II , Fosfatidilinositol 3-Quinases , Ratos , Animais , Humanos , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Fosforilação , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina/metabolismo , Wortmanina/farmacologia , Wortmanina/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Túbulos Renais Proximais/metabolismo , Sódio/metabolismo , Gambás/metabolismo
4.
JCI Insight ; 6(1)2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33232302

RESUMO

Existing animal models of cystic fibrosis (CF) have provided key insights into CF pathogenesis but have been limited by short lifespans, absence of key phenotypes, and/or high maintenance costs. Here, we report the CRISPR/Cas9-mediated generation of CF rabbits, a model with a relatively long lifespan and affordable maintenance and care costs. CF rabbits supplemented solely with oral osmotic laxative had a median survival of approximately 40 days and died of gastrointestinal disease, but therapeutic regimens directed toward restoring gastrointestinal transit extended median survival to approximately 80 days. Surrogate markers of exocrine pancreas disorders were found in CF rabbits with declining health. CFTR expression patterns in WT rabbit airways mimicked humans, with widespread distribution in nasal respiratory and olfactory epithelia, as well as proximal and distal lower airways. CF rabbits exhibited human CF-like abnormalities in the bioelectric properties of the nasal and tracheal epithelia. No spontaneous respiratory disease was detected in young CF rabbits. However, abnormal phenotypes were observed in surviving 1-year-old CF rabbits as compared with WT littermates, and these were especially evident in the nasal respiratory and olfactory epithelium. The CF rabbit model may serve as a useful tool for understanding gut and lung CF pathogenesis and for the practical development of CF therapeutics.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Animais , Sistemas CRISPR-Cas , Fibrose Cística/patologia , Fibrose Cística/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Feminino , Trato Gastrointestinal/patologia , Trato Gastrointestinal/fisiopatologia , Técnicas de Inativação de Genes , Humanos , Masculino , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coelhos , Sistema Respiratório/patologia , Sistema Respiratório/fisiopatologia , Distribuição Tecidual , Transcriptoma
5.
FASEB J ; 33(11): 12602-12615, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31450978

RESUMO

Protein interactions that stabilize the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) at the apical membranes of epithelial cells have not yet been fully elucidated. We identified keratin 19 (CK19 or K19) as a novel CFTR-interacting protein. CK19 overexpression stabilized both wild-type (WT)-CFTR and Lumacaftor (VX-809)-rescued F508del-CFTR (where F508del is the deletion of the phenylalanine residue at position 508) at the plasma membrane (PM), promoting Cl- secretion across human bronchial epithelial (HBE) cells. CK19 prevention of Rab7A-mediated lysosomal degradation was a key mechanism in apical CFTR stabilization. Unexpectedly, CK19 expression was decreased by ∼40% in primary HBE cells from homogenous F508del patients with CF relative to non-CF controls. CK19 also positively regulated multidrug resistance-associated protein 4 expression at the PM, suggesting that this keratin may regulate the apical expression of other ATP-binding cassette proteins as well as CFTR.-Hou, X., Wu, Q., Rajagopalan, C., Zhang, C., Bouhamdan, M., Wei, H., Chen, X., Zaman, K., Li, C., Sun, X., Chen, S., Frizzell, R. A., Sun, F. CK19 stabilizes CFTR at the cell surface by limiting its endocytic pathway degradation.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Endocitose , Queratina-19/metabolismo , Proteólise , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células HEK293 , Células HeLa , Humanos , Queratina-19/genética , Lisossomos/genética , Lisossomos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mutação , Estabilidade Proteica
6.
Mol Ther Nucleic Acids ; 16: 73-81, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30852378

RESUMO

Cystic fibrosis (CF) is a lethal autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Nuclease-mediated precise gene editing (PGE) represents a promising therapy for CF, for which an efficient strategy that is free of viral vector, drug selection, and reporter enrichment (VDR free) is desirable. Here we compared different transfection methods (lipofectamine versus electroporation) and formats (plasmid DNA versus ribonucleoprotein) in delivering the CRISPR/Cas9 elements along with single-stranded oligodeoxynucleotides (ssODNs) to clinically relevant cells targeting major CFTR mutation loci. We demonstrate that, among different combinations, electroporation of CRISPR/Cas9 and guide RNA (gRNA) ribonucleoprotein (Cas9 RNP) is the most effective one. By using this VDR-free method, 4.8% to 27.2% efficiencies were achieved in creating dF508, G542X, and G551D mutations in a wild-type induced pluripotent stem cell (iPSC) line. When it is applied to a patient-derived iPSC line carrying the dF508 mutation, a greater than 20% precise correction rate was achieved. As expected, genetic correction leads to the restoration of CFTR function in iPSC-derived proximal lung organoids, as well as in a patient-derived adenocarcinoma cell line CFPAC-1. The present work demonstrates the feasibility of gene editing-based therapeutics toward monogenic diseases such as CF.

7.
Sci Rep ; 8(1): 4764, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29555962

RESUMO

Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is an important quality control mechanism that eliminates misfolded proteins from the ER. The Derlin-1/VCP/VIMP protein complex plays an essential role in ERAD. Although the roles of Derlin-1 and VCP are relatively clear, the functional activity of VIMP in ERAD remains to be understood. Here we investigate the role of VIMP in the degradation of CFTRΔF508, a cystic fibrosis transmembrane conductance regulator (CFTR) mutant known to be a substrate of ERAD. Overexpression of VIMP markedly enhances the degradation of CFTRΔF508, whereas knockdown of VIMP increases its half-life. We demonstrate that VIMP is associated with CFTRΔF508 and the RNF5 E3 ubiquitin ligase (also known as RMA1). Thus, VIMP not only forms a complex with Derlin-1 and VCP, but may also participate in recruiting substrates and E3 ubiquitin ligases. We further show that blocking CFTRΔF508 degradation by knockdown of VIMP substantially augments the effect of VX809, a drug that allows a fraction of CFTRΔF508 to fold properly and mobilize from ER to cell surface for normal functioning. This study provides insight into the role of VIMP in ERAD and presents a potential target for the treatment of cystic fibrosis patients carrying the CFTRΔF508 mutation.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Degradação Associada com o Retículo Endoplasmático/genética , Proteínas de Membrana/metabolismo , Selenoproteínas/metabolismo , Deleção de Sequência , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Selenoproteínas/deficiência , Selenoproteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA