Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cells ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38826008

RESUMO

Mesenchymal Stromal Cells (MSCs) are investigated as cellular therapeutics for Inflammatory Bowel Diseases and associated Perianal Fistula, although consistent efficacy remains a concern. Determining host factors that modulate MSCs' potency including their secretion of angiogenic & wound healing factors, immunosuppression and anti-inflammatory properties are important determinants of their functionality. We investigated the mechanisms that regulate the secretion of angiogenic & wound healing factors and immune suppression of human bone marrow MSCs. Secretory analysis of MSCs focusing on eighteen angiogenic & wound healing secretory molecules identified the most abundancy of Vascular Endothelial Growth Factor-A(VEGF-A). MSC viability and secretion of other angiogenic factors are not dependent on VEGF-A secretion which exclude the autocrine role of VEGF-A on MSC's fitness. However, combination of inflammatory cytokines IFNγand TNFαreduces MSC's VEGF-A secretion. To identify the effect of intestinal microvasculature on MSCs' potency, coculture analysis was performed between Human Large Intestine Microvascular Endothelial Cells(HLMVECs) and human bone marrow derived MSCs. HLMVECs do not attenuate MSCs' viability despite blocking their VEGF-A secretion. In addition, HLMVECs neither attenuate MSC's IFNγmediated upregulation of immunosuppressive enzyme Indoleamine 2,3-dioxygenase(IDO) nor abrogate suppression of T cell proliferation despite the attenuation of VEGF-A secretion. We found that HLMVECs express copious amounts of endothelial nitric oxide synthase (eNOS) and mechanistic analysis showed that pharmacological blocking reverses HLMVEC mediated attenuation of MSC's VEGF-A secretion. Together these results suggest that secretion of VEGF-A and immunosuppression are separable functions of MSCs which are regulated by distinct mechanisms in the host.

2.
Front Immunol ; 14: 1214098, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37588595

RESUMO

Introduction: Mesenchymal Stromal/Stem cells (MSCs) are an essential component of the regenerative and immunoregulatory stem cell compartment of the human body and thus of major importance in human physiology. The MSCs elicit their beneficial properties through a multitude of complementary mechanisms, which makes it challenging to assess their phenotype and function in environmental toxicity screening. We here employed the novel combinatorial assays matrix approach/technology to profile the MSC response to the herbicide Atrazine, which is a common environmental xenobiotic, that is in widespread agricultural use in the US and other countries, but banned in the EU. Our here presented approach is representative for screening the impact of environmental xenobiotics and toxins on MSCs as an essential representative component of human physiology and well-being. Methods: We here employed the combinatorial assay matrix approach, including a panel of well standardized assays, such as flow cytometry, multiplex secretome analysis, and metabolic assays, to define the phenotype and functionality of human-donor-derived primary MSCs exposed to the representative xenobiotic Atrazine. This assay matrix approach is now also endorsed for characterization of cell therapies by leading regulatory agencies, such as FDA and EMA. Results: Our results show that the exposure to Atrazine modulates the metabolic activity, size, and granularity of MSCs in a dose and time dependent manner. Intriguingly, Atrazine exposure leads to a broad modulation of the MSCs secretome (both upregulation and downmodulation of certain factors) with the identification of Interleukin-8 as the topmost upregulated representative secretory molecule. Interestingly, Atrazine attenuates IFNγ-induced upregulation of MHC-class-II, but not MHC-class-I, and early phosphorylation signals on MSCs. Furthermore, Atrazine exposure attenuates IFNγ responsive secretome of MSCs. Mechanistic knockdown analysis identified that the Atrazine-induced effector molecule Interleukin-8 affects only certain but not all the related angiogenic secretome of MSCs. Discussion: The here described Combinatorial Assay Matrix Technology identified that Atrazine affects both the innate/resting and cytokine-induced/stimulated assay matrix functionality of human MSCs, as identified through the modulation of selective, but not all effector molecules, thus vouching for the great usefulness of this approach to study the impact of xenobiotics on this important human cellular subset involved in the regenerative healing responses in humans.


Assuntos
Atrazina , Células-Tronco Mesenquimais , Humanos , Atrazina/toxicidade , Interleucina-8 , Xenobióticos , Medula Óssea
3.
Stem Cells ; 40(12): 1134-1148, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36056823

RESUMO

Cell manufacturing facilities need to define the potency of mesenchymal stromal cells (MSCs) as cellular therapeutics in advanced clinical trials or marketing approval. Since MSCs' mechanism of action in humans is not well defined, more than a single functional property of MSCs needs to be captured as a surrogate measure of potency utilizing assay matrix technologies. However, the current limitation is the sole investigation of MSC-mediated T-cell suppression as a surrogate measure of potency. We investigated the effect of MSCs on B-cell matrix responses to be incorporated into the assay matrix potency analytical system. Our results demonstrate that MSCs inhibit B-cell differentiation and block pan-antibody secretion upon activation of B cells in the PBMCs. In contrast, MSCs are inferior in blocking B-cell matrix responses when purified B cells are used. Mechanistic analysis has demonstrated that MSC-mediated inhibition of B-cell matrix responses is non-contact dependent and Tryptophan metabolic pathway plays a major role, akin to the mechanism of MSC-mediated T-cell suppression. MSCs also inhibit both T-cell and B-cell responses when both of these lymphoid populations are concurrently activated in the PBMCs. Secretome analysis of MSC and T/B cell-activated PBMC cocultures identified direct and inverse correlative matrix signatures between humoral antibody isotypes and secretory molecules. The current analysis of the combined and concomitant investigation of T-cell and B-cell matrix responses fulfills the potency assay matrix strategy by incorporating MSCs' interaction with more than a single inflammatory immune responder.


Assuntos
Leucócitos Mononucleares , Células-Tronco Mesenquimais , Humanos , Leucócitos Mononucleares/metabolismo , Medula Óssea , Linfócitos T , Técnicas de Cocultura , Células-Tronco Mesenquimais/metabolismo , Proliferação de Células , Células da Medula Óssea
4.
Stem Cells Transl Med ; 11(9): 971-986, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35881077

RESUMO

Potency analysis of mesenchymal stromal cells (MSCs) is required for their use in advanced clinical trials. Assay matrix strategy evaluating more than a single property of MSCs is an emerging strategy in potency analysis. Here we developed an assay matrix approach focusing on the secretory chemokine responses of MSCs using multiplex analytical method. MSCs' innate fitness in secreting matrix of chemokines is correlated with their metabolic fitness in differential degrees. In addition, innately secreting chemokines are correlated among themselves in a unique pattern. MSC's matrix chemokine responses to exogenous stimulation of IFNγ and/or TNFα are distinct. However, the combination of IFNγ and TNFα is superior than individual stimulations in eliciting robust and broad matrix chemokine responses of MSCs. Correlation matrix analysis has identified that chemokine responses to IFNγ and/or TNFα display unique correlative secretion patterns. MSC and peripheral blood mononuclear cells coculture analysis has identified the correlation matrix responses of chemokines that predicted immune suppression. In addition, MSC-mediated blocking of T-cell proliferation predominantly correlates with chemokines in an inverse manner. Knockdown of chemokines has demonstrated that MSC-sourced inherent chemokines do not actively play a role in T-cell suppression and thus are the bystander predictors of T-cell suppression. The present analysis of MSC's matrix chemokine responses can be deployed in the advanced potency analysis of MSCs.


Assuntos
Células-Tronco Mesenquimais , Fator de Necrose Tumoral alfa , Medula Óssea , Células da Medula Óssea , Proliferação de Células , Quimiocinas/metabolismo , Humanos , Leucócitos Mononucleares , Fator de Necrose Tumoral alfa/metabolismo
5.
Front Cell Dev Biol ; 9: 715905, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869307

RESUMO

B7 family proteins serve as checkpoint molecules that protect tumors from T cell mediated lysis. Tryptophan degrading enzymes indoleamine 2,3 dioxygenase (IDO) and tryptophan 2,3 dioxygenase (TDO) also induce T cell immune tolerance. However, little is known about the relative contribution of B7 molecules, tryptophan degrading enzymes, as well as the impact of tumor and stromal cell interactions to the development of immunosuppressive tumor microenvironment. To investigate such interactions, we used a tripartite model of human hepatocellular carcinoma cell line (HepG2) and mesenchymal stromal cells (MSCs) co-cultured with peripheral blood mononuclear cells (PBMCs). Co-culture of HepG2 cells and activated PBMCs demonstrate that HepG2 cells undergo PBMC mediated cytolysis, despite constitutive expression of B7-H3 and upregulation of PD-L1 by IFNγ. Knockdown of B7-H3, PD-L1 or IDO does not modulate PBMC mediated lysis of HepG2 cells. However, TNFα preactivation enhances lysis of HepG2 cells, and blocking of TNFα production from PBMCs protects HepG2 cells. On the other hand, MSCs protect HepG2 cells from PBMC mediated lysis, even in the presence of TNFα. Further investigation showed that MSC mediated protection is associated with the unique secretome profile of upregulated and downregulated cytokines and chemokines. IFNγ activated MSCs are superior to TNFα activated or control MSCs in protecting HepG2 cells. Blockade of IFNγ driven IDO activity completely abolishes the ability of MSCs to protect HepG2 cells from cytolysis by PBMCs. These results suggest that inhibition of IFNγ activation of IDO induction in stromal cells, combined with usage of TNFα, could be a novel immunotherapeutic strategy to induce regression of hepatocellular carcinoma.

7.
Bioresour Technol ; 292: 121936, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31398542

RESUMO

Spent olive pomace from the two-phase extraction system of virgin olive oil and olive pomace oil, is a major agro-industrial residue. Present study aimed at the valorization of residual olive pomace and stones (seeds) by hydrothermal treatment and enzymatic hydrolysis of glucans. Both residues contain lignin (31.2% and 42.1%), glucans (13.8% and 15.3%) and xylans (18.9% and 20.3%). After hydrothermal pretreatment (130 °C, 30 min; severity factor log R0 = 2.99), 65% and 75% of hemicelluloses (65% of xylan) were hydrolysed into xylo-oligosaccharides in pomace and stones, respectively. Cellulose and lignin were not substantially affected. Three commercial enzyme preparations, Saczyme Yield, Ultimase BWL 40 and Celluclast 1.5 L, were evaluated for saccharification of pomace or stones at three biomass loads (10, 20 and 30%, w/v). Saczyme and Ultimase were active with high solid loads (30%), reaching 80 and 90% of glucan conversion in pomace, and 40 and 55% in stones, respectively, after 5 h.


Assuntos
Lignina , Açúcares , Glucose , Hidrólise , Azeite de Oliva
8.
Stem Cells ; 37(8): 1075-1082, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31033095

RESUMO

Defining the immune physiology of culture-adapted mesenchymal stromal cells (MSCs) derived from distinct tissue compartments informs their potential utility as pharmaceuticals. Here, we have investigated the comparative immune plasticity of MSCs and hepatic stellate cells (HeSCs) isolated from human and murine bone marrow (BM) and liver, respectively. Although both BM-MSCs and HeSCs share mesenchymal phenotype and overall molecular genetic responses to inflammatory cues, HeSCs differ from BM-MSCs in a meaningful manner. We show that culture-adapted HeSCs express substantially higher levels of hepatocyte growth factor (HGF), matrix metalloproteinase-1, and chemokine (CC motif) ligand 2 (CCL2) than BM-MSCs. Both human BM-MSCs and HeSCs inhibit T-cell proliferation by a shared indoleamine 2,3-dioxygenase (IDO)-dependent mechanism. However, HeSCs are distinct from BM-MSCs by their significant differential expression of HGF, CCL2, IL-8, CCL11, and GMCSF when cocultured with and/or without activated peripheral blood mononuclear cells. We have investigated MSCs and HeSCs derived from murine systems to describe interspecies comparability. Murine BM-MSCs inhibit T-cell proliferation through inducible nitric oxide synthase (iNOS) but not IDO. However, murine HeSCs inhibit T-cell proliferation through a mechanism distinct from either IDO or iNOS. Altogether, these results suggest that although culture-adapted BM-MSCs and HeSCs display a similar phenotype, their secretome and immune plasticity are in part distinct likely mirroring their tissular origins. In addition, the discordance in immune biology between mouse and human sourced HeSC and BM-MSCs speaks to the importance of comparative biology when interrogating rodent systems for human translational insights. Stem Cells 2019;37:1075-1082.


Assuntos
Antígenos de Diferenciação/imunologia , Células da Medula Óssea/imunologia , Regulação da Expressão Gênica/imunologia , Células Estreladas do Fígado/imunologia , Células-Tronco Mesenquimais/imunologia , Animais , Células da Medula Óssea/citologia , Linhagem Celular , Células Estreladas do Fígado/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Especificidade da Espécie
9.
Viruses ; 10(8)2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127286

RESUMO

Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract disease in young children. With repeat infections throughout life, it can also cause substantial disease in the elderly and in adults with compromised cardiac, pulmonary and immune systems. RSV is a pleomorphic enveloped RNA virus in the Pneumoviridae family. Recently, the three-dimensional (3D) structure of purified RSV particles has been elucidated, revealing three distinct morphological categories: spherical, asymmetric, and filamentous. However, the native 3D structure of RSV particles associated with or released from infected cells has yet to be investigated. In this study, we have established an optimized system for studying RSV structure by imaging RSV-infected cells on transmission electron microscopy (TEM) grids by cryo-electron tomography (cryo-ET). Our results demonstrate that RSV is filamentous across several virus strains and cell lines by cryo-ET, cryo-immuno EM, and thin section TEM techniques. The viral filament length varies from 0.5 to 12 µm and the average filament diameter is approximately 130 nm. Taking advantage of the whole cell tomography technique, we have resolved various stages of RSV assembly. Collectively, our results can facilitate the understanding of viral morphogenesis in RSV and other pleomorphic enveloped viruses.


Assuntos
Vírus Sincicial Respiratório Humano/ultraestrutura , Vírion/ultraestrutura , Montagem de Vírus/fisiologia , Células A549 , Animais , Brônquios/virologia , Linhagem Celular , Chlorocebus aethiops , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Células Epiteliais/ultraestrutura , Células Epiteliais/virologia , Células HeLa , Humanos , Microtomia , Vírus Sincicial Respiratório Humano/fisiologia , Células Vero , Vírion/fisiologia
10.
Cell Rep ; 22(9): 2504-2517, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29490284

RESUMO

Assays that can characterize MSC immune potency need to be identified for use in advanced clinical trials. MSCs possess a number of putative regenerative and immunomodulatory properties, and an assay matrix approach may best capture involved effector pathways. We have tested two assay systems to measure the potency of MSCs derived from human subjects: MSC secretome analysis and a quantitative RNA-based array for genes specific to immunomodulatory and homing properties of MSCs. Secretome analysis identified a unique cytokine signature that is upregulated by MSCs or downregulated in responder PBMCs and correlated with T cell suppression. Use of interferon-γ as a surrogate for the action of activated PBMCs on MSCs served as an alternative for the use of human PBMCs as responder cells in a potency assay. Our approach and results define and simplify the multifunctional or matrix responses of MSCs and may serve as a platform for robust potency analysis.


Assuntos
Células-Tronco Mesenquimais/citologia , Comunicação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Citocinas/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/farmacologia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos
11.
Blood Adv ; 1(11): 628-643, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28713871

RESUMO

Industrial-scale expansion of mesenchymal stromal cells (MSCs) is often used in clinical trials, and the effect of replicative senescence on MSC functionality is of mechanistic interest. Senescent MSCs exhibit cell-cycle arrest, cellular hypertrophy, and express the senescent marker ß-galactosidase. Although both fit and senescent MSCs display intact lung-homing properties in vivo, senescent MSCs acquire a significant defect in inhibiting T-cell proliferation and cytokine secretion in vitro. IFNγ does not upregulate HLA-DR on senescent MSCs, whereas its silencing did not reverse fit MSCs' immunosuppressive properties. Secretome analysis of MSC and activated peripheral blood mononuclear cell coculture demonstrate that senescent MSCs are significantly defective in up (vascular endothelial growth factor [VEGF], granulocyte colony-stimulating factor [GCSF], CXCL10, CCL2) or down (IL-1ra, IFNγ, IL-2r, CCL4, tumor necrosis factor-α, IL-5) regulating cytokines/chemokines. Unlike indoleamine 2,3 dioxygenase (IDO), silencing of CXCL9, CXCL10, CXCL11, GCSF, CCL2, and exogenous addition of VEGF, fibroblast growth factor-basic do not modulate MSCs' immunosuppressive properties. Kynurenine levels were downregulated in senescent MSC cocultures compared with fit MSC counterparts, and exogenous addition of kynurenine inhibits T-cell proliferation in the presence of senescent MSCs. IFNγ prelicensing activated several immunomodulatory genes including IDO in fit and senescent MSCs at comparable levels and significantly enhanced senescent MSCs' immunosuppressive effect on T-cell proliferation. Our results define immune functional defects acquired by senescent MSCs, which are reversible by IFNγ prelicensing.

12.
PLoS One ; 9(12): e114322, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25500821

RESUMO

Infections with human rhinovirus (HRV) are commonly associated with acute upper and lower respiratory tract disease and asthma exacerbations. The role that HRVs play in these diseases suggests it is important to understand host-specific or virus-specific factors that contribute to pathogenesis. Since species A HRVs are often associated with more serious HRV disease than species B HRVs, differences in immune responses they induce should inform disease pathogenesis. To identify species differences in induced responses, we evaluated 3 species A viruses, HRV 25, 31 and 36 and 3 species B viruses, HRV 4, 35 and 48 by exposing human PBMCs to HRV infected Calu-3 cells. To evaluate the potential effect of memory induced by previous HRV infection on study responses, we tested cord blood mononuclear cells that should be HRV naïve. There were HRV-associated increases (significant increase compared to mock-infected cells) for one or more HRVs for IP-10 and IL-15 that was unaffected by addition of PBMCs, for MIP-1α, MIP-1ß, IFN-α, and HGF only with addition of PBMCs, and for ENA-78 only without addition of PBMCs. All three species B HRVs induced higher levels, compared to A HRVs, of MIP-1α and MIP-1ß with PBMCs and ENA-78 without PBMCs. In contrast, addition of CBMCs had less effect and did not induce MIP-1α, MIP-1ß, or IFN-α nor block ENA-78 production. Addition of CBMCs did, however, increase IP-10 levels for HRV 35 and HRV 36 infection. The presence of an effect with PBMCs and no effect with CBMCs for some responses suggest differences between the two types of cells possibly because of the presence of HRV memory responses in PBMCs and not CBMCs or limited response capacity for the immature CBMCs relative to PBMCs. Thus, our results indicate that different HRV strains can induce different patterns of cytokines and chemokines; some of these differences may be due to differences in memory responses induced by past HRV infections, and other differences related to virus factors that can inform disease pathogenesis.


Assuntos
Quimiocinas/metabolismo , Células Epiteliais/metabolismo , Leucócitos Mononucleares/metabolismo , Sistema Respiratório/citologia , Rhinovirus/fisiologia , Adulto , Quimiocinas/biossíntese , Sangue Fetal/citologia , Células HeLa , Humanos , Leucócitos Mononucleares/imunologia , Replicação Viral
13.
PLoS One ; 8(6): e66600, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23799120

RESUMO

Human rhinovirus (HRV) infections are associated with the common cold, occasionally with more serious lower respiratory tract illnesses, and frequently with asthma exacerbations. The clinical features of HRV infection and its association with asthma exacerbation suggest that some HRV disease results from virus-induced host immune responses to infection. To study the HRV-infection-induced host responses and the contribution of these responses to disease, we have developed an in vitro model of HRV infection of human airway epithelial cells (Calu-3 cells) and subsequent exposure of human peripheral blood mononuclear cells (PBMCs) to these infected cells in a two-chamber trans-well tissue culture system. Using this model, we studied HRV 14 (species B) and HRV 16 (species A) induced cytokine and chemokine responses with PBMCs from four healthy adults. Infection of Calu-3 cells with either virus induced HRV-associated increases in FGF-Basic, IL-15, IL-6, IL-28A, ENA-78 and IP-10. The addition of PBMCs to HRV 14-infected cells gave significant increases in MIP-1ß, IL-28A, MCP-2, and IFN-α as compared with mock-infected cells. Interestingly, ENA-78 levels were reduced in HRV 14 infected cells that were exposed to PBMCs. Addition of PBMCs to HRV 16-infected cells did not induce MIP-1ß, IL-28A and IFN-α efficiently nor did it decrease ENA-78 levels. Our results demonstrate a clear difference between HRV 14 and HRV 16 and the source of PBMCs, in up or down regulation of several cytokines including those that are linked to airway inflammation. Such differences might be one of the reasons for variation in disease associated with different HRV species including variation in their link to asthma exacerbations as suggested by other studies. Further study of immune responses associated with different HRVs and PBMCs from different patient groups, and the mechanisms leading to these differences, should help characterize pathogenesis of HRV disease and generate novel approaches to its treatment.


Assuntos
Resfriado Comum/virologia , Monócitos/patologia , Rhinovirus/fisiologia , Traqueia/patologia , Adulto , Estudos de Casos e Controles , Linhagem Celular , Técnicas de Cocultura , Resfriado Comum/sangue , Resfriado Comum/patologia , Citocinas/metabolismo , Células Epiteliais/patologia , Humanos , Reação em Cadeia da Polimerase em Tempo Real
14.
J Biol Chem ; 285(10): 7827-37, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20053985

RESUMO

Tripartite motif (TRIM) protein TRIM5alpha has been shown to restrict human immunodeficiency virus, type 1 infection in Old World monkey cells at the early post-entry step by poorly understood mechanisms. Currently, the physiological function of TRIM5alpha is not known. In this study, we showed that transiently overexpressed TRIM5alpha causes a morphological change in HEK293T cells. A proteomics analysis of the protein complexes that were pulled down with hemagglutinin-tagged TRIM5alpha suggested that the heat shock protein 70 (Hsp70) may serve as a TRIM5alpha-binding partner. The interaction between Hsp70 and TRIM5alpha was confirmed by co-localization and co-immunoprecipitation assays. Co-expression of Hsp70 reversed the TRIM5alpha-induced morphological change in HEK293T cells. Another heat shock protein Hsc70 also bound to TRIM5alpha, but unlike Hsp70, Hsc70 was not able to reverse the TRIM5alpha-induced morphological change, suggesting that Hsp70 specifically reverses the morphological change caused by TRIM5alpha. Studies using a series of TRIM5alpha deletion mutants demonstrate that, although the PRYSPRY domain is critical for binding to Hsp70, the entire TRIM5alpha structure is necessary to induce the morphological change of cells. When the ATPase domain of Hsp70 was mutated, the mutated Hsp70 could not counteract the morphological change induced by TRIM5alpha, indicating that the catalytic activity of Hsp70 protein is important for this function. Co-expression of Hsp70 elevated the levels of TRIM5alpha in the detergent-soluble fraction with a concomitant decrease in the detergent-insoluble fraction. Together these results suggest that Hsp70 plays critical roles in the cellular management against the TRIM5alpha-induced cellular insults.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas/química , Proteínas/metabolismo , Animais , Linhagem Celular , Forma Celular , Proteínas de Choque Térmico HSP70/genética , Humanos , Macaca mulatta , Modelos Moleculares , Ligação Proteica , Proteínas/genética , Proteoma/análise , Retroviridae/genética , Retroviridae/metabolismo , Ubiquitina-Proteína Ligases
15.
Retrovirology ; 7: 1, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20078884

RESUMO

BACKGROUND: The human immunodeficiency virus type 1 (HIV-1) Vpu protein degrades CD4 and counteracts a restriction factor termed tetherin (CD317; Bst-2) to enhance virion release. It has been suggested that both functions can be genetically separated by mutation of a serine residue at position 52. However, recent data suggest that the S52 phosphorylation site is also important for the ability of Vpu to counteract tetherin. To clarify this issue, we performed a comprehensive analysis of HIV-1 with a mutated casein kinase-II phosphorylation site in Vpu in various cell lines, primary blood lymphocytes (PBL), monocyte-derived macrophages (MDM) and ex vivo human lymphoid tissue (HLT). RESULTS: We show that mutation of serine 52 to alanine (S52A) entirely disrupts Vpu-mediated degradation of CD4 and strongly impairs its ability to antagonize tetherin. Furthermore, casein-kinase II inhibitors blocked the ability of Vpu to degrade tetherin. Overall, Vpu S52A could only overcome low levels of tetherin, and its activity decreased in a manner dependent on the amount of transiently or endogenously expressed tetherin. As a consequence, the S52A Vpu mutant virus was unable to replicate in macrophages, which express high levels of this restriction factor. In contrast, HIV-1 Vpu S52A caused CD4+ T-cell depletion and spread efficiently in ex vivo human lymphoid tissue and PBL, most likely because these cells express comparably low levels of tetherin. CONCLUSION: Our data explain why the effect of the S52A mutation in Vpu on virus release is cell-type dependent and suggest that a reduced ability of Vpu to counteract tetherin impairs HIV-1 replication in macrophages, but not in tissue CD4+ T cells.


Assuntos
HIV-1/fisiologia , Proteínas do Vírus da Imunodeficiência Humana/fisiologia , Macrófagos/virologia , Glicoproteínas de Membrana/antagonistas & inibidores , Linfócitos T/virologia , Proteínas Virais Reguladoras e Acessórias/fisiologia , Liberação de Vírus , Replicação Viral , Substituição de Aminoácidos , Antígenos CD , Antígenos CD4/metabolismo , Linhagem Celular , Células Cultivadas , Proteínas Ligadas por GPI , Proteínas do Vírus da Imunodeficiência Humana/genética , Humanos , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/fisiologia , Proteínas Virais Reguladoras e Acessórias/genética
16.
Virology ; 341(2): 313-20, 2005 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-16102792

RESUMO

The LTRs of all primate lentiviruses contain long U3 regions overlapping the nef gene. To assess the relevance of the modulatory U3 region for HIV-1 replication, we inactivated the T-rich region, the Polypurine tract and attachment (att) sequences in nef by silent mutations and inserted intact cis-regulatory elements just upstream of the core enhancer. These modifications severely truncated the U3 region and eliminated the nef overlap. The resulting HIV-1 mutants expressed functional Nef, replicated efficiently and caused CD4+ T cell depletion in ex vivo-infected lymphoid tissue suggesting that the modulatory U3 region might not be essential for efficient HIV-1 gene expression and AIDS pathogenesis.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Repetição Terminal Longa de HIV/genética , HIV-1/genética , HIV-1/fisiologia , Tonsila Palatina/virologia , Replicação Viral , Contagem de Linfócito CD4 , Linhagem Celular , Células Cultivadas , Produtos do Gene nef/análise , Genes nef , Proteína do Núcleo p24 do HIV/análise , Repetição Terminal Longa de HIV/fisiologia , Transcriptase Reversa do HIV/análise , Humanos , Mutação , Elementos Reguladores de Transcrição , Produtos do Gene nef do Vírus da Imunodeficiência Humana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA