Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(9): 4191-4207, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37026479

RESUMO

Adenosine deaminase acting on RNA ADAR1 promotes A-to-I conversion in double-stranded and structured RNAs. ADAR1 has two isoforms transcribed from different promoters: cytoplasmic ADAR1p150 is interferon-inducible while ADAR1p110 is constitutively expressed and primarily localized in the nucleus. Mutations in ADAR1 cause Aicardi - Goutières syndrome (AGS), a severe autoinflammatory disease associated with aberrant IFN production. In mice, deletion of ADAR1 or the p150 isoform leads to embryonic lethality driven by overexpression of interferon-stimulated genes. This phenotype is rescued by deletion of the cytoplasmic dsRNA-sensor MDA5 indicating that the p150 isoform is indispensable and cannot be rescued by ADAR1p110. Nevertheless, editing sites uniquely targeted by ADAR1p150 remain elusive. Here, by transfection of ADAR1 isoforms into ADAR-less mouse cells we detect isoform-specific editing patterns. Using mutated ADAR variants, we test how intracellular localization and the presence of a Z-DNA binding domain-α affect editing preferences. These data show that ZBDα only minimally contributes to p150 editing-specificity while isoform-specific editing is primarily directed by the intracellular localization of ADAR1 isoforms. Our study is complemented by RIP-seq on human cells ectopically expressing tagged-ADAR1 isoforms. Both datasets reveal enrichment of intronic editing and binding by ADAR1p110 while ADAR1p150 preferentially binds and edits 3'UTRs.


Assuntos
Adenosina Desaminase , Interferons , Edição de RNA , RNA de Cadeia Dupla , Animais , Humanos , Camundongos , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Interferons/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA de Cadeia Dupla/genética
2.
Am J Physiol Cell Physiol ; 323(5): C1496-C1511, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36036447

RESUMO

Adenosine deaminases acting on RNAs convert adenosines (A) to inosines (I) in structured or double-stranded RNAs. In mammals, this process is widespread. In the human transcriptome, more than a million different sites have been identified that undergo an ADAR-mediated A-to-I exchange Inosines have an altered base pairing potential due to the missing amino group when compared to the original adenosine. Consequently, inosines prefer to base pair with cytosines but can also base pair with uracil or adenine. This altered base pairing potential not only affects protein decoding at the ribosome but also influences the folding of RNAs and the proteins that can associate with it. Consequently, an A to I exchange can also affect RNA processing and turnover (Nishikura K. Annu Rev Biochem 79: 321-349, 2010; Brümmer A, Yang Y, Chan TW, Xiao X. Nat Commun 8: 1255, 2017). All of these events will interfere with gene expression and therefore, can also affect cellular and organismic physiology. As double-stranded RNAs are a hallmark of viral pathogens RNA-editing not only affects RNA-processing, coding, and gene expression but also controls the antiviral response to double-stranded RNAs. Most interestingly, recent advances in our understanding of ADAR enzymes reveal multiple layers of regulation by which ADARs can control antiviral programs. In this review, we focus on the recoding of mRNAs where the altered translation products lead to physiological changes. We also address recent advances in our understanding of the multiple layers of antiviral responses and innate immune modulations mediated by ADAR1.


Assuntos
Edição de RNA , Proteínas de Ligação a RNA , Animais , Humanos , Edição de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Inosina/genética , Inosina/metabolismo , RNA de Cadeia Dupla , Adenosina/genética , Adenosina/metabolismo , RNA Viral , Mamíferos/genética , Mamíferos/metabolismo , Antivirais
3.
J Biol Chem ; 292(36): 14730-14746, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28701466

RESUMO

Methionine synthase (MS) catalyzes methylation of homocysteine, the last step in the biosynthesis of methionine, which is essential for the regeneration of tetrahydrofolate and biosynthesis of S-adenosylmethionine. Here, we report that MS is localized to the nucleus of Pichia pastoris and Candida albicans but is cytoplasmic in Saccharomyces cerevisiae The P. pastoris strain carrying a deletion of the MET6 gene encoding MS (Ppmet6) exhibits methionine as well as adenine auxotrophy indicating that MS is required for methionine as well as adenine biosynthesis. Nuclear localization of P. pastoris MS (PpMS) was abrogated by the deletion of 107 C-terminal amino acids or the R742A mutation. In silico analysis of the PpMS structure indicated that PpMS may exist in a dimer-like configuration in which Arg-742 of a monomer forms a salt bridge with Asp-113 of another monomer. Biochemical studies indicate that R742A as well as D113R mutations abrogate nuclear localization of PpMS and its ability to reverse methionine auxotrophy of Ppmet6 Thus, association of two PpMS monomers through the interaction of Arg-742 and Asp-113 is essential for catalytic activity and nuclear localization. When PpMS is targeted to the cytoplasm employing a heterologous nuclear export signal, it is expressed at very low levels and is unable to reverse methionine and adenine auxotrophy of Ppmet6 Thus, nuclear localization is essential for the stability and function of MS in P. pastoris. We conclude that nuclear localization of MS is a unique feature of respiratory yeasts such as P. pastoris and C. albicans, and it may have novel moonlighting functions in the nucleus.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/análise , Candida albicans/enzimologia , Núcleo Celular/enzimologia , Citoplasma/enzimologia , Pichia/enzimologia , Saccharomyces cerevisiae/enzimologia , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Candida albicans/citologia , Metionina/metabolismo , Microscopia de Fluorescência , Modelos Moleculares , Pichia/citologia , Transporte Proteico , Saccharomyces cerevisiae/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA