Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 10: 962161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186597

RESUMO

Bioinspired photocatalysis has resulted in efficient solutions for many areas of science and technology spanning from solar cells to medicine. Here we show a new bioinspired semiconductor nanocomposite (nanoTiO2-DOPA-luciferase, TiDoL) capable of converting light energy within cancerous tissues into chemical species that are highly disruptive to cell metabolism and lead to cell death. This localized activity of semiconductor nanocomposites is triggered by cancer-generated activators. Adenosine triphosphate (ATP) is produced in excess in cancer tissues only and activates nearby immobilized TiDoL composites, thereby eliminating its off-target toxicity. The interaction of TiDoL with cancerous cells was probed in situ and in real-time to establish a detailed mechanism of nanoparticle activation, triggering of the apoptotic signaling cascade, and finally, cancer cell death. Activation of TiDoL with non-cancerous cells did not result in cell toxicity. Exploring the activation of antibody-targeted semiconductor conjugates using ATP is a step toward a universal approach to single-cell-targeted medical therapies with more precision, efficacy, and potentially fewer side effects.

2.
Angew Chem Int Ed Engl ; 59(36): 15734-15740, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32468699

RESUMO

Using high-resolution transmission electron microscopy and electron energy-loss spectroscopy, we show that beryllium oxide crystallizes in the planar hexagonal structure in a graphene liquid cell by a wet-chemistry approach. These liquid cells can feature van-der-Waals pressures up to 1 GPa, producing a miniaturized high-pressure container for the crystallization in solution. The thickness of as-received crystals is beyond the thermodynamic ultra-thin limit above which the wurtzite phase is energetically more favorable according to the theoretical prediction. The crystallization of the planar phase is ascribed to the near-free-standing condition afforded by the graphene surface. Our calculations show that the energy barrier of the phase transition is responsible for the observed thickness beyond the previously predicted limit. These findings open a new door for exploring aqueous-solution approaches of more metal-oxide semiconductors with exotic phase structures and properties in graphene-encapsulated confined cells.

3.
Angew Chem Int Ed Engl ; 58(15): 4896-4900, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30701643

RESUMO

Herein, we present a light-gated protocell model made of plasmonic colloidal capsules (CCs) assembled with bacteriorhodopsin for converting solar energy into electrochemical gradients to drive the synthesis of energy-storage molecules. This synthetic protocell incorporated an important intrinsic property of noble metal colloidal particles, namely, plasmonic resonance. In particular, the near-field coupling between adjacent metal nanoparticles gave rise to strongly localized electric fields and resulted in a broad absorption in the whole visible spectra, which in turn promoted the flux of photons to bacteriorhodopsin and accelerated the proton pumping kinetics. The cell-like potential of this design was further demonstrated by leveraging the outward pumped protons as "chemical signals" for triggering ATP biosynthesis in a coexistent synthetic protocell population. Hereby, we lay the ground work for the engineering of colloidal supraparticle-based synthetic protocells with higher-order functionalities.


Assuntos
Trifosfato de Adenosina/síntese química , Células Artificiais/química , Luz , Fótons , Ressonância de Plasmônio de Superfície , Trifosfato de Adenosina/química , Bacteriorodopsinas/química , Engenharia Celular , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Propriedades de Superfície
4.
Nat Commun ; 5: 4606, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25132637

RESUMO

In natural systems, electron flow is mediated by proteins that spatially organize donor and acceptor molecules with great precision. Achieving this guided, directional flow of information is a desirable feature in photovoltaic media. Here, we design self-assembled peptide materials that organize multiple electronic components capable of performing photoinduced charge separation. Two peptides, c16-AHL3K3-CO2H and c16-AHL3K9-CO2H, self-assemble into fibres and provide a scaffold capable of binding a metalloporphyrin via histidine axial ligation and mineralize titanium dioxide (TiO2) on the lysine-rich surface of the resulting fibrous structures. Electron paramagnetic resonance studies of this self-assembled material under continuous light excitation demonstrate charge separation induced by excitation of the metalloporphyrin and mediated by the peptide assembly structure. This approach to dye-sensitized semiconducting materials offers a means to spatially control the dye molecule with respect to the semiconducting material through careful, strategic peptide design.


Assuntos
Elétrons , Metaloporfirinas/química , Peptídeos/química , Processos Fotoquímicos , Titânio/química , Corantes , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Histidina , Lisina , Modelos Moleculares
5.
Nano Lett ; 12(5): 2429-35, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22468698

RESUMO

Material design in terms of their morphologies other than solid nanoparticles can lead to more advanced properties. At the example of iron oxide, we explored the electrochemical properties of hollow nanoparticles with an application as a cathode and anode. Such nanoparticles contain very high concentration of cation vacancies that can be efficiently utilized for reversible Li ion intercalation without structural change. Cycling in high voltage range results in high capacity (∼132 mAh/g at 2.5 V), 99.7% Coulombic efficiency, superior rate performance (133 mAh/g at 3000 mA/g) and excellent stability (no fading at fast rate during more than 500 cycles). Cation vacancies in hollow iron oxide nanoparticles are also found to be responsible for the enhanced capacity in the conversion reactions. We monitored in situ structural transformation of hollow iron oxide nanoparticles by synchrotron X-ray absorption and diffraction techniques that provided us clear understanding of the lithium intercalation processes during electrochemical cycling.

6.
Methods Mol Biol ; 726: 63-75, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21424443

RESUMO

Semiconductor photocatalysis using nanoparticulate TiO(2) has proven to be a promising technology for use in catalytic reactions, in the cleanup of water contaminated with hazardous industrial by-products, and in nanocrystalline solar cells as a photoactive material. Metal oxide semiconductor colloids are of considerable interest because of their photocatalytic properties. The coordination sphere of the surface metal atoms is incomplete and thus traps light-induced charges, but also exhibits high affinity for oxygen-containing ligands and gives the opportunity for chemical modification. We use enediol linkers, such as dopamine and its analogs, to bridge the semiconductors to biomolecules such as DNA or proteins. Nanobio hybrids that combine the physical robustness and chemical reactivity of nanoscale metal oxides with the molecular recognition and selectivity of biomolecules were developed. Control of chemical processes within living cells was achieved using TiO(2) nanocomposites in order to develop new tools for advanced nanotherapeutics. Here, we describe general experimental approaches for synthesis and characterization of high crystallinity, water soluble 5 nm TiO(2) particles and their nanobio composites, methods of cellular sample preparation for advanced Synchrotron-based imaging of nanoparticles in single cell X-ray fluorescence, and a detailed experimental setup for application of the high-performance TiO(2)-based nanobio photocatalyst for targeted lysis of cancerous or other disordered cells.


Assuntos
Diagnóstico por Imagem , Nanopartículas Metálicas/uso terapêutico , Titânio/química , Titânio/uso terapêutico , Linhagem Celular , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura
7.
Phys Med Biol ; 55(15): 4389-97, 2010 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-20647599

RESUMO

The purpose of this study was to investigate the feasibility of using a 2-deoxy-d-glucose (2-DG) labeled gold nanoparticle (AuNP-2-DG) as a functionally targeted computed tomography (CT) contrast agent to obtain high-resolution metabolic and anatomic information of tumor in a single CT scan. Gold nanoparticles (AuNPs) were fabricated and were conjugated with 1-DG or 2-DG. 1-DG provides an excellent comparison since it is known to interfere with the ability of the glucose transporter to recognize the sugar moiety. The human alveolar epithelial cancer cell line, A-549, was chosen for the in vitro cellular uptake assay. Three groups of cell samples were incubated with the 1-DG or 2-DG labeled AuNP and the unlabeled AuNP. Following the incubation, the cells were washed with sterile phosphate buffered saline to remove the excess AuNPs and spun using a centrifuge. The cell pellets were imaged using a microCT scanner immediately after the centrifugation. Internalization of AuNP-2-DG is verified using transmission electron microscopy imaging. Significant contrast enhancement in the cell samples incubated with the AuNP-2-DG with respect to the cell samples incubated with the unlabeled AuNP and the AuNP-1-DG was observed in multiple CT slices. Results from our in vitro experiments suggest that the AuNP-2-DG may be used as a functional CT contrast agent to provide high-resolution metabolic and anatomic information in a single CT scan. These results justify further in vitro and in vivo experiments to study the feasibility of using the AuNP-2-DG as a functional CT contrast agent in radiation therapy settings.


Assuntos
Meios de Contraste , Desoxiglucose , Neoplasias/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Transporte Biológico , Linhagem Celular Tumoral , Meios de Contraste/química , Meios de Contraste/metabolismo , Desoxiglucose/química , Desoxiglucose/metabolismo , Ouro/química , Humanos , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão
8.
Mol Imaging Biol ; 12(5): 463-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20237857

RESUMO

PURPOSE: To study the feasibility of using 2-deoxy-D-glucose (2-DG)-labeled gold nanoparticle (AuNP-DG) as a computed tomography (CT) contrast agent with tumor targeting capability through in vitro experiments. PROCEDURES: Gold nanoparticles (AuNP) were fabricated and were conjugated with 2-deoxy-D-glucose. The human alveolar epithelial cancer cell line, A-549, was chosen for the in vitro cellular uptake assay. Two groups of cell samples were incubated with the AuNP-DG and the unlabeled AuNP, respectively. Following the incubation, the cells were washed with sterile PBS to remove the excess gold nanoparticles and spun to cell pellets using a centrifuge. The cell pellets were imaged using a microCT scanner immediately after the centrifugation. The reconstructed CT images were analyzed using a commercial software package. RESULTS: Significant contrast enhancement in the cell samples incubated with the AuNP-DG with respect to the cell samples incubated with the unlabeled AuNP was observed in multiple CT slices. CONCLUSIONS: Results from this study demonstrate enhanced uptake of 2-DG-labeled gold nanoparticle by cancer cells in vitro and warrant further experiments to study the exact molecular mechanism by which the AuNP-DG is internalized and retained in the tumor cells.


Assuntos
Ouro/química , Nanopartículas Metálicas , Neoplasias/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Linhagem Celular Tumoral , Meios de Contraste , Humanos , Microscopia Eletrônica de Transmissão , Neoplasias/patologia
9.
Nat Mater ; 9(2): 165-71, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19946279

RESUMO

Nanomagnetic materials offer exciting avenues for probing cell mechanics and activating mechanosensitive ion channels, as well as for advancing cancer therapies. Most experimental works so far have used superparamagnetic materials. This report describes a first approach based on interfacing cells with lithographically defined microdiscs that possess a spin-vortex ground state. When an alternating magnetic field is applied the microdisc vortices shift, creating an oscillation, which transmits a mechanical force to the cell. Because reduced sensitivity of cancer cells toward apoptosis leads to inappropriate cell survival and malignant progression, selective induction of apoptosis is of great importance for the anticancer therapeutic strategies. We show that the spin-vortex-mediated stimulus creates two dramatic effects: compromised integrity of the cellular membrane, and initiation of programmed cell death. A low-frequency field of a few tens of hertz applied for only ten minutes was sufficient to achieve approximately 90% cancer-cell destruction in vitro.


Assuntos
Magnetismo , Neoplasias/patologia , Neoplasias/terapia , Anticorpos Monoclonais/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Cálcio/metabolismo , Morte Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Espaço Intracelular/metabolismo , Fenômenos Mecânicos , Imagem Molecular , Neoplasias/metabolismo
10.
Nano Lett ; 9(9): 3337-42, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19640002

RESUMO

We report pronounced and specific antiglioblastoma cell phototoxicity of 5 nm TiO(2) particles covalently tethered to an antibody via a dihydroxybenzene bivalent linker. The linker application enables absorption of a visible part of the solar spectrum by the nanobio hybrid. The phototoxicity is mediated by reactive oxygen species (ROS) that initiate programmed death of the cancer cell. Synchrotron X-ray fluorescence microscopy (XFM) was applied for direct visualization of the nanobioconjugate distribution through a single brain cancer cell at the submicrometer scale.


Assuntos
Anticorpos Monoclonais/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Hidroquinonas/farmacologia , Nanopartículas/química , Titânio/farmacologia , Anticorpos Monoclonais/uso terapêutico , Catálise , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidroquinonas/química , Teste de Materiais , Modelos Biológicos , Nanotecnologia , Tamanho da Partícula , Fotoquímica , Propriedades de Superfície , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA