Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(45): 28485-28495, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097666

RESUMO

The recent discovery of sensory (tastant and odorant) G protein-coupled receptors on the smooth muscle of human bronchi suggests unappreciated therapeutic targets in the management of obstructive lung diseases. Here we have characterized the effects of a wide range of volatile odorants on the contractile state of airway smooth muscle (ASM) and uncovered a complex mechanism of odorant-evoked signaling properties that regulate excitation-contraction (E-C) coupling in human ASM cells. Initial studies established multiple odorous molecules capable of increasing intracellular calcium ([Ca2+]i) in ASM cells, some of which were (paradoxically) associated with ASM relaxation. Subsequent studies showed a terpenoid molecule (nerol)-stimulated OR2W3 caused increases in [Ca2+]i and relaxation of ASM cells. Of note, OR2W3-evoked [Ca2+]i mobilization and ASM relaxation required Ca2+ flux through the store-operated calcium entry (SOCE) pathway and accompanied plasma membrane depolarization. This chemosensory odorant receptor response was not mediated by adenylyl cyclase (AC)/cyclic nucleotide-gated (CNG) channels or by protein kinase A (PKA) activity. Instead, ASM olfactory responses to the monoterpene nerol were predominated by the activity of Ca2+-activated chloride channels (TMEM16A), including the cystic fibrosis transmembrane conductance regulator (CFTR) expressed on endo(sarco)plasmic reticulum. These findings demonstrate compartmentalization of Ca2+ signals dictates the odorant receptor OR2W3-induced ASM relaxation and identify a previously unrecognized E-C coupling mechanism that could be exploited in the development of therapeutics to treat obstructive lung diseases.


Assuntos
Anoctamina-1/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Músculo Liso/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores Odorantes/metabolismo , Adenilil Ciclases/metabolismo , Brônquios/metabolismo , Cálcio/metabolismo , Células Cultivadas , Humanos , Pulmão/metabolismo , Contração Muscular/fisiologia , Relaxamento Muscular , Miócitos de Músculo Liso/metabolismo , Receptores Odorantes/genética
2.
Sci Rep ; 6: 38231, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27905542

RESUMO

Pathways that control, or can be exploited to alter, the increase in airway smooth muscle (ASM) mass and cellular remodeling that occur in asthma are not well defined. Here we report the expression of odorant receptors (ORs) belonging to the superfamily of G-protein coupled receptors (GPCRs), as well as the canonical olfaction machinery (Golf and AC3) in the smooth muscle of human bronchi. In primary cultures of isolated human ASM, we identified mRNA expression for multiple ORs. Strikingly, OR51E2 was the most highly enriched OR transcript mapped to the human olfactome in lung-resident cells. In a heterologous expression system, OR51E2 trafficked readily to the cell surface and showed ligand selectivity and sensitivity to the short chain fatty acids (SCFAs) acetate and propionate. These endogenous metabolic byproducts of the gut microbiota slowed the rate of cytoskeletal remodeling, as well as the proliferation of human ASM cells. These cellular responses in vitro were found in ASM from non-asthmatics and asthmatics, and were absent in OR51E2-deleted primary human ASM. These results demonstrate a novel chemo-mechanical signaling network in the ASM and serve as a proof-of-concept that a specific receptor of the gut-lung axis can be targeted to treat airflow obstruction in asthma.


Assuntos
Asma/metabolismo , Brônquios/metabolismo , Mecanotransdução Celular , Miócitos de Músculo Liso/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores Odorantes/metabolismo , Asma/patologia , Brônquios/patologia , Humanos , Miócitos de Músculo Liso/patologia
3.
J Biol Chem ; 283(6): 3497-3506, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18073213

RESUMO

Stress responses in both plants and yeast utilize calcium-mediated signaling. A yeast strain, K616, which lacks Ca(2+) pumps, requires micromolar Ca(2+) for growth. In medium containing 100 microM Ca(2+), K616 can withstand osmotic stress (750 mM sorbitol) and ionic stress (300 mM KCl) but not hypersodic stress (300 mM NaCl). Heterologous expression of the endoplasmic reticulum-located Arabidopsis thaliana Ca(2+)-ATPase, ACA2, permits K616 to grow under NaCl stress even in Ca(2+)-depleted medium. All stresses tested generated transient elevation of cytosolic Ca(2+) in wild type yeast, K601, whereas NaCl alone induced prolonged elevation of cytosolic Ca(2+) in K616. Both the Ca(2+) transient and survival of cultures subjected to NaCl stress was similar for the ACA2 transformant and K601. However, whereas K601 maintained low cytosolic Na(+) predominantly by pumping it out across the plasma membrane, the transformant sequestered Na(+) in internal organelles. This sequestration requires the presence of an endomembrane Na(+)/H(+)-antiporter, NHX1, which does not play a significant role in salt tolerance of wild type yeast except at acidic pH. Transcript levels of the plasma membrane Na(+)-ATPase, ENA1, were strongly induced only in K601, whereas NHX1 was strongly induced in both K601 and the ACA2 transformant. The calmodulin kinase inhibitor KN62 significantly reduced the salt tolerance of the ACA2 transformant and the transcriptional induction of NHX1. Thus, the heterologous expression of a plant endomembrane Ca(2+) pump results in the rapid depletion of cytosolic Ca(2+) and the activation of an alternate mechanism for surviving saline stress.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , ATPases Transportadoras de Cálcio/química , Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Equorina/química , Proteínas de Arabidopsis/química , ATPases Transportadoras de Cálcio/fisiologia , Membrana Celular/metabolismo , Citosol/metabolismo , Teste de Complementação Genética , Homeostase , Saccharomyces cerevisiae/metabolismo , Sais/farmacologia , Transdução de Sinais , Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA