Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
bioRxiv ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39091758

RESUMO

The cotranslational misfolding of the cystic fibrosis transmembrane conductance regulator chloride channel (CFTR) plays a central role in the molecular basis of cystic fibrosis (CF). The misfolding of the most common CF variant (ΔF508) remodels both the translational regulation and quality control of CFTR. Nevertheless, it is unclear how the misassembly of the nascent polypeptide may directly influence the activity of the translation machinery. In this work, we identify a structural motif within the CFTR transcript that stimulates efficient -1 ribosomal frameshifting and triggers the premature termination of translation. Though this motif does not appear to impact the interactome of wild-type CFTR, silent mutations that disrupt this RNA structure alter the association of nascent ΔF508 CFTR with numerous translation and quality control proteins. Moreover, disrupting this RNA structure enhances the functional gating of the ΔF508 CFTR channel at the plasma membrane and its pharmacological rescue by the CFTR modulators contained in the CF drug Trikafta. The effects of the RNA structure on ΔF508 CFTR appear to be attenuated in the absence of the ER membrane protein complex (EMC), which was previously found to modulate ribosome collisions during "preemptive quality control" of a misfolded CFTR homolog. Together, our results reveal that ribosomal frameshifting selectively modulates the assembly, function, and pharmacological rescue of a misfolded CFTR variant. These findings suggest interactions between the nascent chain, quality control machinery, and ribosome may dynamically modulate ribosomal frameshifting in order to tune the processivity of translation in response to cotranslational misfolding.

2.
J Cyst Fibros ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39033068

RESUMO

BACKGROUND: Acrolein, an aldehyde in smoke from tobacco products, inhibits CFTR function in vitro. Ivacaftor is an FDA-approved potentiator that improves mutant CFTR function. This human clinical study investigated the relationship between two urinary markers of tobacco smoke exposure - the acrolein metabolite 3-HPMA and the nicotine metabolite NNAL - and sweat chloride response to ivacaftor in the G551D Observational Trial (GOAL). METHODS: 3-HPMA (low: <50th centile; moderate: 50-75th centile; high: >75th centile) and NNAL (detectable/undetectable) in GOAL samples was quantified with LC-MS/MS. Self-report of tobacco smoke exposure (Y/N) served as a subjective measure. Change in sweat chloride from pre- to 6 months post-ivacaftor treatment (ΔSC) was the primary CFTR-dependent readout. RESULTS: The sample included 151 individuals, mean age 20.7 (SD 11.4) years, range 6-59 years. Smoke exposure prevalence was 15 % per self-reports but 27 % based on detectable NNAL. 3-HPMA was increased in those reporting tobacco smoke exposure (607 vs 354 ng/ml, p = 0.008), with a higher proportion of smoke-exposed in the high- vs low-acrolein group (31 % vs 9 %, p=0.040). Compared to low-acrolein counterparts, high-acrolein participants experienced less decrease in sweat chloride (-35.2 vs -48.2 mmol/L; p = 0.020) and had higher sweat chloride values (50.6 vs 37.6 mmol/L; p = 0.020) 6 months post-ivacaftor. The odds of ivacaftor-mediated potentiation to near normative CFTR function (defined as SC6mo <40 mmol/L) was more than twice as high in the low-acrolein cohort (OR: 2.51, p = 0.026). CONCLUSIONS: Increased urinary 3-HPMA, an acrolein metabolite of tobacco smoke, is associated with a diminished sweat chloride response to ivacaftor potentiation of CFTR function.

3.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37502889

RESUMO

Excessive alcohol use is thought to increase the risk of respiratory infections by impairing mucociliary clearance (MCC). In this study, we investigate the hypothesis that alcohol reduces the function of CFTR, the protein that is defective in individuals with cystic fibrosis, thus altering mucus properties to impair MCC and the airway's defense against inhaled pathogens. Methods: Sprague Dawley rats with wild type CFTR (+/+), matched for age and sex, were administered either a Lieber-DeCarli alcohol diet or a control diet with the same number of calories for eight weeks. CFTR activity was measured using nasal potential difference (NPD) assay and Ussing chamber electrophysiology of tracheal tissue samples. In vivo MCC was determined by measuring the radiographic clearance of inhaled Tc99 particles and the depth of the airway periciliary liquid (PCL) and mucus transport rate in excised trachea using micro-optical coherence tomography (µOCT). The levels of rat lung MUC5b and CFTR were estimated by protein and mRNA analysis. Results: Alcohol diet was found to decrease CFTR ion transport in the nasal and tracheal epithelium in vivo and ex vivo. This decrease in activity was also reflected in partially reduced full-length CFTR protein levels but not, in mRNA copies, in the lungs of rats. Furthermore, alcohol-fed rats showed a significant decrease in MCC after 8 weeks of alcohol consumption. The trachea from these rats also showed reduced PCL depth, indicating a decrease in mucosal surface hydration that was reflected in delayed mucus transport. Diminished MCC rate was also likely due to the elevated MUC5b expression in alcohol-fed rat lungs. Conclusions: Excessive alcohol use can decrease the expression and activity of CFTR channels, leading to reduced airway surface hydration and impaired mucus clearance. This suggests that CFTR dysfunction plays a role in the compromised lung defense against respiratory pathogens in individuals who drink alcohol excessively.

4.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L557-L570, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36852921

RESUMO

Electronic cigarettes (e-cigs) are often promoted as safe alternatives to smoking based on the faulty perception that inhaling nicotine is safe until other harmful chemicals in cigarette smoke are absent. Previously, others and we have reported that, similar to cigarette smoke, e-cig aerosols decrease CFTR-mediated ion transport across airway epithelium. However, it is unclear whether such defective epithelial ion transport by e-cig aerosols occurs in vivo and what the singular contribution of inhaled nicotine is to impairments in mucociliary clearance (MCC), the primary physiologic defense of the airways. Here, we tested the effects of nicotine aerosols from e-cigs in primary human bronchial epithelial (HBE) cells and two animal models, rats and ferrets, known for their increasing physiologic complexity and potential for clinical translation, followed by in vitro and in vivo electrophysiologic assays for CFTR activity and micro-optical coherence tomography (µOCT) image analyses for alterations in airway mucus physiology. Data presented in this report indicate nicotine in e-cig aerosols causes 1) reduced CFTR and epithelial Na+ channel (ENaC)-mediated ion transport, 2) delayed MCC, and 3) diminished airway surface hydration, as determined by periciliary liquid depth analysis. Interestingly, the common e-cig vehicles vegetable glycerin and propylene glycol did not affect CFTR function or MCC in vivo despite their significant adverse effects in vitro. Overall, our studies contribute to an improved understanding of inhaled nicotine effects on lung health among e-cig users and inform pathologic mechanisms involved in altered host defense and increased risk for tobacco-associated lung diseases.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nicotina , Animais , Humanos , Ratos , Nicotina/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística , Depuração Mucociliar , Furões , Aerossóis e Gotículas Respiratórios , Pulmão , Aerossóis
5.
J Acquir Immune Defic Syndr ; 92(3): 263-270, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36331810

RESUMO

BACKGROUND: HIV is associated with an increased risk for emphysema. Matrix metalloproteinase 9 (MMP-9) is a lung tissue remodeling enzyme associated with emphysema. We previously found MMP-9 activity increases with increases in oxidative stress and that HIV increases alveolar oxidative stress. We hypothesized that HIV proteins would increase the risk of cigarette smoke-induced emphysema due to MMP-9. METHODS: HIV-1 transgenic rats and wild-type littermates were exposed to cigarette smoke or sham for 8 weeks. Lung compliance and histology were assessed. Bronchoalveolar lavage (BAL), primary alveolar macrophages (AM), and serum samples were obtained. A rat alveolar macrophage cell line was exposed to the HIV protein Tat, and MMP-9 levels were assessed by Western immunoblotting. MMP-9 protein expression and activity were assessed in AM from the HIV rat model by ELISA and cytoimmunofluoresence, respectively. Serum from human subjects with and without HIV and tobacco dependence was assessed for MMP-9 levels. RESULTS: MMP-9 expression was significantly increased in rat alveolar macrophages after Tat exposure. HIV-1 transgenic rats developed emphysema while wild-type littermates did not. MMP-9 expression was also increased in the serum, BAL, and AM of HIV-1 transgenic rats after exposure to cigarette smoke compared with wild-type rats. In parallel, serum samples from HIV+ smokers had higher levels of MMP-9 than subjects without HIV and those who did not smoke. CONCLUSION: The combination of HIV and cigarette smoke increases MMP-9 expression in experimental rat HIV models and human subjects. HIV and cigarette smoke both induce alveolar oxidative stress and thereby increase MMP-9 activity.


Assuntos
Fumar Cigarros , Enfisema , Infecções por HIV , Enfisema Pulmonar , Ratos , Humanos , Animais , Metaloproteinase 9 da Matriz , Ratos Transgênicos , Fumar Cigarros/efeitos adversos , Infecções por HIV/patologia , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/metabolismo , Pulmão , Enfisema/etiologia , Enfisema/metabolismo , Enfisema/patologia , Líquido da Lavagem Broncoalveolar
6.
Respir Res ; 23(1): 277, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36217144

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a progressive lung disease with poor treatment options. However, most mouse models of COPD produce a primarily emphysematous disease not recapitulating clinically meaningful COPD features like chronic bronchitis. METHODS: Wild-type ferrets (Mustela putorius furo) were divided randomly into two groups: whole body cigarette smoke exposure and air controls. Ferrets were exposed to smoke from 1R6F research cigarettes, twice daily for six months. RNA-sequencing was performed on RNA isolated from lung tissue. Comparative transcriptomics analyses of COPD in ferrets, mice, and humans were done to find the uniquely expressed genes. Further, Real-time PCR was performed to confirmed RNA-Seq data on multiple selected genes. RESULTS: RNA-sequence analysis identified 420 differentially expressed genes (DEGs) that were associated with the development of COPD in ferrets. By comparative analysis, we identified 25 DEGs that are uniquely expressed in ferrets and humans, but not mice. Among DEGs, a number were related to mucociliary clearance (NEK-6, HAS1, and KL), while others have been correlated with abnormal lung function (IL-18), inflammation (TREM1, CTSB), or oxidative stress (SRX1, AHRR). Multiple cellular pathways were aberrantly altered in the COPD ferret model, including pathways associated with COPD pathogenesis in humans. Validation of these selected unique DEGs using real-time PCR demonstrated > absolute 2-fold changes in mRNA versus air controls, consistent with RNA-seq analysis. CONCLUSION: Cigarette smoke-induced COPD in ferrets modulates gene expression consistent with human COPD and suggests that the ferret model may be uniquely well suited for the study of aspects of the disease.


Assuntos
Furões , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Furões/genética , Interleucina-18 , Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma , Receptor Gatilho 1 Expresso em Células Mieloides/genética , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo
7.
Eur Respir J ; 60(1)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34916262

RESUMO

RATIONALE: The majority of chronic obstructive pulmonary disease (COPD) patients have chronic bronchitis, for which specific therapies are unavailable. Acquired cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction is observed in chronic bronchitis, but has not been proven in a controlled animal model with airway disease. Furthermore, the potential of CFTR as a therapeutic target has not been tested in vivo, given limitations to rodent models of COPD. Ferrets exhibit cystic fibrosis-related lung pathology when CFTR is absent and COPD with bronchitis following cigarette smoke exposure. OBJECTIVES: To evaluate CFTR dysfunction induced by smoking and test its pharmacological reversal by a novel CFTR potentiator, GLPG2196, in a ferret model of COPD with chronic bronchitis. METHODS: Ferrets were exposed for 6 months to cigarette smoke to induce COPD and chronic bronchitis and then treated with enteral GLPG2196 once daily for 1 month. Electrophysiological measurements of ion transport and CFTR function, assessment of mucociliary function by one-micron optical coherence tomography imaging and particle-tracking microrheology, microcomputed tomography imaging, histopathological analysis and quantification of CFTR protein and mRNA expression were used to evaluate mechanistic and pathophysiological changes. MEASUREMENTS AND MAIN RESULTS: Following cigarette smoke exposure, ferrets exhibited CFTR dysfunction, increased mucus viscosity, delayed mucociliary clearance, airway wall thickening and airway epithelial hypertrophy. In COPD ferrets, GLPG2196 treatment reversed CFTR dysfunction, increased mucus transport by decreasing mucus viscosity, and reduced bronchial wall thickening and airway epithelial hypertrophy. CONCLUSIONS: The pharmacologic reversal of acquired CFTR dysfunction is beneficial against pathological features of chronic bronchitis in a COPD ferret model.


Assuntos
Bronquite Crônica , Doença Pulmonar Obstrutiva Crônica , Animais , Bronquite Crônica/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Furões/metabolismo , Hipertrofia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Microtomografia por Raio-X
8.
FASEB J ; 35(10): e21946, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34555226

RESUMO

Acute respiratory distress syndrome (ARDS) is a life-threatening illness characterized by decreased alveolar-capillary barrier function, pulmonary edema consisting of proteinaceous fluid, and inhibition of net alveolar fluid transport responsible for resolution of pulmonary edema. There is currently no pharmacotherapy that has proven useful to prevent or treat ARDS, and two trials using beta-agonist therapy to treat ARDS demonstrated no effect. Prior studies indicated that IL-8-induced heterologous desensitization of the beta2-adrenergic receptor (ß2 -AR) led to decreased beta-agonist-induced mobilization of cyclic adenosine monophosphate (cAMP). Interestingly, phosphodiesterase (PDE) 4 inhibitors have been used in human airway diseases characterized by low intracellular cAMP levels and increases in specific cAMP hydrolyzing activity. Therefore, we hypothesized that PDE4 would mediate IL-8-induced heterologous internalization of the ß2 -AR and that PDE4 inhibition would restore beta-agonist-induced functions. We determined that CINC-1 (a functional IL-8 analog in rats) induces internalization of ß2 -AR from the cell surface, and arrestin-2, PDE4, and ß2 -AR form a complex during this process. Furthermore, we determined that cAMP associated with the plasma membrane was adversely affected by ß2 -AR heterologous desensitization. Additionally, we determined that rolipram, a PDE4 inhibitor, reversed CINC-1-induced derangements of cAMP and also caused ß2 -AR to successfully recycle back to the cell surface. Finally, we demonstrated that rolipram could reverse CINC-1-mediated inhibition of beta-agonist-induced alveolar fluid clearance in a murine model of trauma-shock. These results indicate that PDE4 plays a role in CINC-1-induced heterologous internalization of the ß2 -AR; PDE4 inhibition reverses these effects and may be a useful adjunct in particular ARDS patients.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Interleucina-8/imunologia , Receptores Adrenérgicos beta 2/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Quimiocina CXCL1/metabolismo , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/farmacologia , Regulação para Baixo/efeitos dos fármacos , Masculino , Camundongos , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , beta-Arrestina 1/metabolismo
9.
ERJ Open Res ; 6(3)2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32802827

RESUMO

RATIONALE: Non-typeable Haemophilus influenzae (NTHi) is a common inhabitant of the human nasopharynx and upper airways that can cause opportunistic infections of the airway mucosa including bronchopulmonary infections in patients with chronic obstructive pulmonary disease (COPD). It is clear that opportunistic infections contribute significantly to inflammatory exacerbations of COPD; however, there remains much to be learned regarding specific host and microbial determinants of persistence and/or clearance in this context. METHODS: In this study, we used a recently described ferret model for COPD, in which animals undergo chronic long-term exposure to cigarette smoke, to define host-pathogen interactions during COPD-related NTHi infections. RESULTS: NTHi bacteria colonised the lungs of smoke-exposed animals to a greater extent than controls, and elicited acute host inflammation and neutrophilic influx and activation, along with a significant increase in airway resistance and a decrease in inspiratory capacity consistent with inflammatory exacerbation; notably, these findings were not observed in air-exposed control animals. NTHi bacteria persisted within multicellular biofilm communities within the airway lumen, as evidenced by immunofluorescent detection of bacterial aggregates encased within a sialylated matrix as is typical of NTHi biofilms and differential bacterial gene expression consistent with the biofilm mode of growth. CONCLUSIONS: Based on these results, we conclude that acute infection with NTHi initiates inflammatory exacerbation of COPD disease. The data also support the widely held hypothesis that NTHi bacteria persist within multicellular biofilm communities in the lungs of patients with COPD.

10.
Am J Physiol Lung Cell Mol Physiol ; 319(1): L11-L20, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32374671

RESUMO

Structural changes to airway morphology, such as increased bronchial wall thickness (BWT) and airway wall area, are cardinal features of chronic obstructive pulmonary disease (COPD). Ferrets are a recently established animal model uniquely exhibiting similar clinical and pathological characteristics of COPD as humans, including chronic bronchitis. Our objective was to develop a microcomputed tomography (µCT) method for evaluating structural changes to the airways in ferrets and assess whether the effects of smoking induce changes consistent with chronic bronchitis in humans. Ferrets were exposed to mainstream cigarette smoke or air control twice daily for 6 mo. µCT was conducted in vivo at 6 mo; a longitudinal cohort was imaged monthly. Manual measurements of BWT, luminal diameter (LD), and BWT-to-LD ratio (BWT/LD) were conducted and confirmed by a semiautomated algorithm. The square root of bronchial wall area (√WA) versus luminal perimeter was determined on an individual ferret basis. Smoke-exposed ferrets reproducibly demonstrated 34% increased BWT (P < 0.001) along with increased LD and BWT/LD versus air controls. Regression indicated that the effect of smoking on BWT persisted despite controlling for covariates. Semiautomated measurements replicated findings. √WA for the theoretical median airway luminal perimeter of 4 mm (Pi4) was elevated 4.4% in smoke-exposed ferrets (P = 0.015). Increased BWT and Pi4 developed steadily over time. µCT-based airway measurements in ferrets are feasible and reproducible. Smoke-exposed ferrets develop increased BWT and Pi4, changes similar to humans with chronic bronchitis. µCT can be used as a significant translational platform to measure dynamic airway morphological changes.

12.
Eur Respir J ; 55(1)2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672759

RESUMO

The mechanisms by which cigarette smoking impairs airway mucus clearance are not well understood. We recently established a ferret model of cigarette smoke-induced chronic obstructive pulmonary disease (COPD) exhibiting chronic bronchitis. We investigated the effects of cigarette smoke on mucociliary transport (MCT).Adult ferrets were exposed to cigarette smoke for 6 months, with in vivo mucociliary clearance measured by technetium-labelled DTPA retention. Excised tracheae were imaged with micro-optical coherence tomography. Mucus changes in primary human airway epithelial cells and ex vivo ferret airways were assessed by histology and particle tracking microrheology. Linear mixed models for repeated measures identified key determinants of MCT.Compared to air controls, cigarette smoke-exposed ferrets exhibited mucus hypersecretion, delayed mucociliary clearance (-89.0%, p<0.01) and impaired tracheal MCT (-29.4%, p<0.05). Cholinergic stimulus augmented airway surface liquid (ASL) depth (5.8±0.3 to 7.3±0.6 µm, p<0.0001) and restored MCT (6.8±0.8 to 12.9±1.2 mm·min-1, p<0.0001). Mixed model analysis controlling for covariates indicated smoking exposure, mucus hydration (ASL) and ciliary beat frequency were important predictors of MCT. Ferret mucus was hyperviscous following smoke exposure in vivo or in vitro, and contributed to diminished MCT. Primary cells from smokers with and without COPD recapitulated these findings, which persisted despite the absence of continued smoke exposure.Cigarette smoke impairs MCT by inducing airway dehydration and increased mucus viscosity, and can be partially abrogated by cholinergic secretion of fluid secretion. These data elucidate the detrimental effects of cigarette smoke exposure on mucus clearance and suggest additional avenues for therapeutic intervention.


Assuntos
Desidratação , Doença Pulmonar Obstrutiva Crônica , Adulto , Humanos , Depuração Mucociliar , Muco , Fumar/efeitos adversos , Viscosidade
13.
Mol Ther ; 27(2): 442-455, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30595527

RESUMO

Transforming growth factor ß (TGF-ß), signaling induced by cigarette smoke (CS), plays an important role in the progression of airway diseases, like chronic bronchitis associated with chronic obstructive pulmonary disease (COPD), and in smokers. Chronic bronchitis is characterized by reduced mucociliary clearance (MCC). Cystic fibrosis transmembrane conductance regulator (CFTR) plays an important role in normal MCC. TGF-ß and CS (via TGF-ß) promote acquired CFTR dysfunction by suppressing CFTR biogenesis and function. Understanding the mechanism by which CS promotes CFTR dysfunction can identify therapeutic leads to reverse CFTR suppression and rescue MCC. TGF-ß alters the microRNAome of primary human bronchial epithelium. TGF-ß and CS upregulate miR-145-5p expression to suppress CFTR and the CFTR modifier, SLC26A9. miR-145-5p upregulation with a concomitant CFTR and SLC26A9 suppression was validated in CS-exposed mouse models. While miR-145-5p antagonism rescued the effects of TGF-ß in bronchial epithelial cells following transfection, an aptamer to block TGF-ß signaling rescues CS- and TGF-ß-mediated suppression of CFTR biogenesis and function in the absence of any transfection reagent. These results demonstrate that miR-145-5p plays a significant role in acquired CFTR dysfunction by CS, and they validate a clinically feasible strategy for delivery by inhalation to locally modulate TGF-ß signaling in the airway and rescue CFTR biogenesis and function.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , MicroRNAs/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Fumar/efeitos adversos , Fator de Crescimento Transformador beta/metabolismo , Animais , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Camundongos , Camundongos Mutantes , MicroRNAs/genética , Doença Pulmonar Obstrutiva Crônica/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Fator de Crescimento Transformador beta/genética
14.
Am J Respir Cell Mol Biol ; 61(2): 162-173, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30576219

RESUMO

Cigarette smoking is associated with chronic obstructive pulmonary disease and chronic bronchitis. Acquired ion transport abnormalities, including cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction, caused by cigarette smoking have been proposed as potential mechanisms for mucus obstruction in chronic bronchitis. Although e-cigarette use is popular and perceived to be safe, whether it harms the airways via mechanisms altering ion transport remains unclear. In the present study, we sought to determine if e-cigarette vapor, like cigarette smoke, has the potential to induce acquired CFTR dysfunction, and to what degree. Electrophysiological methods demonstrated reduced chloride transport caused by vaporized e-cigarette liquid or vegetable glycerin at various exposures (30 min, 57.2% and 14.4% respectively, vs. control; P < 0.0001), but not by unvaporized liquid (60 min, 17.6% vs. untreated), indicating that thermal degradation of these products is required to induce the observed defects. We also observed reduced ATP-dependent responses (-10.8 ± 3.0 vs. -18.8 ± 5.1 µA/cm2 control) and epithelial sodium channel activity (95.8% reduction) in primary human bronchial epithelial cells after 5 minutes, suggesting that exposures dramatically inhibit epithelial ion transport beyond CFTR, even without diminished transepithelial resistance or cytotoxicity. Vaporizing e-cigarette liquid produced reactive aldehydes, including acrolein (shown to induce acquired CFTR dysfunction), as quantified by mass spectrometry, demonstrating that respiratory toxicants in cigarette smoke can also be found in e-cigarette vapor (30 min air, 224.5 ± 15.99; unvaporized liquid, 284.8 ± 35.03; vapor, 54,468 ± 3,908 ng/ml; P < 0.0001). E-cigarettes can induce ion channel dysfunction in airway epithelial cells, partly through acrolein production. These findings indicate a heretofore unknown toxicity of e-cigarette use known to be associated with chronic bronchitis onset and progression, as well as with chronic obstructive pulmonary disease severity.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/efeitos dos fármacos , Glicerol/efeitos adversos , Transporte de Íons , Fumaça/efeitos adversos , Fumar/efeitos adversos , Acroleína/química , Trifosfato de Adenosina/metabolismo , Brônquios/metabolismo , Bronquite Crônica/fisiopatologia , Sobrevivência Celular , Fumar Cigarros , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Progressão da Doença , Eletrofisiologia , Células Epiteliais/metabolismo , Glicerol/metabolismo , Humanos , Espectrometria de Massas , Muco/metabolismo , Nebulizadores e Vaporizadores , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Sistema Respiratório/efeitos dos fármacos , Fatores de Tempo
16.
JCI Insight ; 3(21)2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30385726

RESUMO

Pulmonary fibrosis and emphysema are irreversible chronic events after inhalation injury. However, the mechanism(s) involved in their development remain poorly understood. Higher levels of plasma and lung heme have been recorded in acute lung injury associated with several insults. Here, we provide the molecular basis for heme-induced chronic lung injury. We found elevated plasma heme in chronic obstructive pulmonary disease (COPD) (GOLD stage 4) patients and also in a ferret model of COPD secondary to chronic cigarette smoke inhalation. Next, we developed a rodent model of chronic lung injury, where we exposed C57BL/6 mice to the halogen gas, bromine (Br2) (400 ppm, 30 minutes), and returned them to room air resulting in combined airway fibrosis and emphysematous phenotype, as indicated by high collagen deposition in the peribronchial spaces, increased lung hydroxyproline concentrations, and alveolar septal damage. These mice also had elevated pulmonary endoplasmic reticulum (ER) stress as seen in COPD patients; the pharmacological or genetic diminution of ER stress in mice attenuated Br2-induced lung changes. Finally, treating mice with the heme-scavenging protein, hemopexin, reduced plasma heme, ER stress, airway fibrosis, and emphysema. This is the first study to our knowledge to report elevated heme in COPD patients and establishes heme scavenging as a potential therapy after inhalation injury.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Estresse do Retículo Endoplasmático/genética , Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/veterinária , Idoso , Animais , Enfisema/induzido quimicamente , Enfisema/patologia , Feminino , Fibrose/induzido quimicamente , Fibrose/patologia , Heme/metabolismo , Humanos , Hidroxiprolina/metabolismo , Inalação , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/classificação , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fumaça/efeitos adversos
19.
PLoS One ; 12(10): e0186984, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29077751

RESUMO

Limited success achieved in translating basic science discoveries into clinical applications for chronic airway diseases is attributed to differences in respiratory anatomy and physiology, poor approximation of pathologic processes, and lack of correlative clinical endpoints between humans and laboratory animal models. Here, we discuss advantages of using ferrets (Mustela putorus furo) as a model for improved understanding of human airway physiology and demonstrate assays for quantifying airway epithelial ion transport in vivo and ex vivo, and establish air-liquid interface cultures of ferret airway epithelial cells as a complementary in vitro model for mechanistic studies. We present data here that establishes the feasibility of measuring these human disease endpoints in ferrets. Briefly, potential difference across the nasal and the lower airway epithelium in ferrets could be consistently assessed, were highly reproducible, and responsive to experimental interventions. Additionally, ferret airway epithelial cells were amenable to primary cell culture methods for in vitro experiments as was the use of ferret tracheal explants as an ex vivo system for assessing ion transport. The feasibility of conducting multiple assessments of disease outcomes supports the adoption of ferrets as a highly relevant model for research in obstructive airway diseases.


Assuntos
Furões/fisiologia , Transporte de Íons , Animais , Brônquios/citologia , Brônquios/metabolismo , Brônquios/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fenômenos Eletrofisiológicos , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Canais Epiteliais de Sódio/metabolismo , Traqueia/citologia , Traqueia/metabolismo , Traqueia/fisiologia
20.
Respir Res ; 18(1): 173, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28923049

RESUMO

BACKGROUND: Dysfunction in cystic fibrosis transmembrane conductance regulator (CFTR) can be elicited by cigarette smoke and is observed in patients with chronic bronchitis. We have previously demonstrated in human airway epithelial cell monolayers that roflumilast, a clinically approved phosphodiesterase 4 inhibitor that reduces the risk of exacerbations in chronic obstructive pulmonary disease patients with chronic bronchitis and a history of exacerbations, activates CFTR-dependent chloride secretion via a cAMP-mediated pathway, partially restores the detrimental effects of cigarette smoke on CFTR-mediated ion transport, and increases CFTR-dependent gastrointestinal fluid secretion in isolated murine intestine segments. Based on these findings, we hypothesized that roflumilast could improve CFTR-mediated chloride transport and induce secretory diarrhea in mice exhibiting cigarette smoke-induced CFTR dysfunction. METHODS: A/J mice expressing wild type CFTR (+/+) were exposed to cigarette smoke or air with or without roflumilast and the effect of treatment on CFTR-dependent chloride transport was quantified using nasal potential difference (NPD) measurements in vivo and short-circuit current (Isc) analysis of trachea ex vivo. Stool specimen were collected and the wet/dry ratio measured to assess the effect of roflumilast on secretory diarrhea. RESULTS: Acute roflumilast treatment increased CFTR-dependent chloride transport in both smoke- and air-exposed mice (smoke, -2.0 ± 0.4 mV, 131.3 ± 29.3 µA/cm2, P < 0.01 and air, 3.9 ± 0.8 mV, 147.7 ± 38.0 µA/cm2, P < 0.01 vs. vehicle -0.3 ± 0.7 mV, 10.4 ± 7.0 µA/cm2). Oral administration of roflumilast over five weeks completely reversed the deleterious effects of cigarette smoke on CFTR function in smoke-exposed animals, in which CFTR-dependent chloride transport was 64% that of air controls (roflumilast, -15.22 ± 2.7 mV vs. air, -14.45 ± 1.4 mV, P < 0.05). Smoke exposure increased the wet/dry ratio of stool specimen to a level beyond which roflumilast had little additional effect. CONCLUSIONS: Roflumilast effectively rescues CFTR-mediated chloride transport in vivo, further implicating CFTR activation as a mechanism through which roflumilast benefits patients with bronchitis.


Assuntos
Aminopiridinas/uso terapêutico , Benzamidas/uso terapêutico , Fumar Cigarros/tratamento farmacológico , Fumar Cigarros/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Aminopiridinas/farmacologia , Animais , Benzamidas/farmacologia , Ciclopropanos/farmacologia , Ciclopropanos/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/agonistas , Feminino , Exposição por Inalação/efeitos adversos , Transporte de Íons/efeitos dos fármacos , Transporte de Íons/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos CFTR , Inibidores da Fosfodiesterase 4/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA