Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 443: 138561, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301558

RESUMO

In our study, ammoniated hollow mesoporous silica nanoparticles (NH2-HMSN) with uniform diameter and stable structure were successively prepared via SiO2 core hard template method. Fourier transformed infrared spectroscopy revealed that amino group was effectively modified. Adsorption experiments showed that adsorption capacity of NH2-HMSN towards free fatty acids (FFAs) was superior to aminated mesopores or silica microspheres. Following through optimization of extraction conditions, FFAs from edible oil samples were successfully gathered by NH2-HMSN and showed favorable linearities (0.2-90 µg g-1), remarkably low limit of detections (0.03-0.15 nmol g-1), acceptable recoveries (85.08-96.82 %) and relatively accurate precisions (1.64-4.99 %). In comparison to existing adsorbent, NH2-HMSN could be successfully prepared via the chemical reaction of common raw materials under normal pressure and temperature. Furthermore, NH2-HMSN with hollow and mesoporous structure was more effective than the current adsorbents aimed at FFAs analysis in aspect of surface area and adsorption capacity.


Assuntos
Neuropatia Hereditária Motora e Sensorial , Nanopartículas , Humanos , Ácidos Graxos não Esterificados , Dióxido de Silício/química , Nanopartículas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Adsorção
2.
Food Chem ; 374: 131759, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34896944

RESUMO

Strawberry is a rich source of phenolics. However, most studies focused on extractable phenolics (EP) while neglecting non-extractable phenolics (NEP). The aim of this study was to characterize EP and NEP from strawberry (Fragaria × ananassa) and determine their anti-inflammatory and anti-colon cancer potentials in cell culture models. NEP contained flavonols, flavanols and phenolic acids that were released through alkaline hydrolysis. NEP dose-dependently inhibited lipopolysaccharides -induced NO production in RAW 264.7 macrophage. Western blotting showed that NEP reduced the expression levels of pro-inflammatory proteins such as iNOS and c-FOS, but increased the expression level of antioxidative protein, such as HO-1. Moreover, NEP markedly suppressed proliferation of human colon cancer HCT116 cells via inducing G2/M phase cell cycle arrest and apoptosis. Collectively, these findings illustrated preventive effects of strawberry NEP against inflammation and colon cancer, shedding light on potential contribution of NEP from strawberry as a health-promoting agent.


Assuntos
Neoplasias do Colo , Fragaria , Frutas/química , Humanos , Inflamação , Fenóis/análise , Polifenóis
3.
Food Chem ; 344: 128566, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33191007

RESUMO

Three scallop protein hydrolysates (SPH) were obtained by enzymatic hydrolysis of scallop meal by Pepsin, Dispase and Alcalase, respectively. The antioxidant activities of the SPHs were characterized for their free radical scavenging activities through 1,1-diphenyl-2-picrylhydrazyl (DPPH)/hydroxyl/2,2' azino-bis-3-(ethylbenzthiazoline-6-sulphonic acid) (ABTS) assays, showing at least 60% radicals scavenging activities in samples (10 mg/mL). Moreover, the Alcalase-hydrolyzed SPH (ASPH) was shown to have the highest free radical scavenging activity determined by Electron Spin Resonance (ESR), due to the high proportion of antioxidant amino acids (35.25%) and better solubility. In addition, the ASPH also exhibited promising inhibitory effects (30-40%) against lipid oxidation in emulsifying system and excellent emulsifying and foaming properties. In vitro, the ASPH exhibited protective effects (nearly 20%) against H2O2-induced cytotoxicity probably due to the inhibition of mitochondria-associated generation of reactive oxygen species (ROS). The ASPH may potentially serve as a high-valued scallop-based food additive with great health benefits.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Pectinidae/química , Proteínas/química , Proteínas/farmacologia , Subtilisinas/metabolismo , Animais , Hidrólise , Oxirredução
4.
Food Chem ; 330: 127248, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32531638

RESUMO

The effects of endogenous proteolysis and oxidation on mechanical properties of sea cucumber (Stichopus japonicus) during thermal processing and storage and their control were investigated. The lactic acid (LA) + tea polyphenols (TP)-treated sea cucumbers showed relatively higher values in texture and rheological indicators than the blank control group after thermal processing. By contrast, the (LA + TP)-treated sea cucumbers also had lower values in water-soluble hydroxyproline, glycosaminoglycans and proteins, trichloroacetic acid-soluble peptide content, and more orderly secondary structure of proteins, indicating that the additives affected the mechanical properties of thermally processed sea cucumbers by preventing the proteolysis of proteins. All texture and rheological indicators of thermally processed sea cucumbers decreased time-dependently during chilled storage. The additives (LA + TP) significantly prevented the progressive deterioration in mechanical properties by retarding the changes in microstructure as well as phase state and distribution of water through preventing protein oxidation.


Assuntos
Pepinos-do-Mar/química , Animais , Temperatura Alta , Hidroxiprolina/química , Oxirredução , Proteólise
5.
J Food Sci ; 85(4): 1292-1301, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32144766

RESUMO

Chemoprevention strategies employing the use of multiple dietary bioactive components and their metabolites in combination offer advantages due to their low toxicity and potential synergistic interactions. Herein, for the first time, we studied the combination of curcumin and 3',4'-didemethylnobiletin (DDMN), a primary metabolite of nobiletin, to determine their combinatory effects in inhibiting growth of human colon cancer cells. Isobologram analysis revealed a synergistic interaction between curcumin and DDMN in the inhibition of cell growth of HCT116 colon cancer cells. The combination treatment induced significant G2 -M cell-cycle arrest and extensive apoptosis, which greatly exceeded the effects of individual treatments with curcumin or DDMN. Proteins associated with these heightened anticarcinogenic effects were p53, p21, HO-1, c-poly(ADP-ribose) polymerase, Cdc2, and Cdc25c; each of the proteins was confirmed to be substantially impacted by the combination treatment, more than by individual treatments alone. Interestingly, an increase in the stability of curcumin was also observed with the presence of DDMN in cell culture medium, which could offer an explanation in part for the synergistic interaction between curcumin and DDMN. This newly identified synergy between curcumin and DDMN should be explored further to determine its chemopreventive potential against colon cancer in vivo. PRACTICAL APPLICATION: This study identifies for the first time the synergistic inhibition of colon cancer cell growth by the dietary component curcumin present in turmeric, in combination with a metabolite of nobiletin, a unique citrus flavonoid. The synergism of the combination may be due to cell-cycle arrest and apoptosis induced by the combination as well as an improvement in the stability of curcumin as a result of the antioxidant property of the nobiletin metabolite. These significant findings of synergism between curcumin and the nobiletin metabolite could offer potential chemopreventive value against colon cancer.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Curcumina/farmacocinética , Flavonas/farmacocinética , Anticarcinógenos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Curcumina/farmacologia , Sinergismo Farmacológico , Flavonas/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos
6.
Food Chem ; 313: 126139, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31927203

RESUMO

Based on various antioxidant mechanisms, four kinds of antioxidants including ascorbyl palmitate (AP), vitamin E (VE), phytic acid (PA) and one of the polyphenols (antioxidant of bamboo leaves, tea polyphenol palmitate or tea polyphenols (TP)) were used in combination to improve oxidative stability of docosahexaenoic acid (DHA) algae oil. To achieve the best effect, the formulations and mixture ratios of the antioxidant combinations were optimized. The effects were monitored by peroxide value, thiobarbituric acid-reactive substances, acid value, free radicals, Rancimat induction time and fatty acid composition of DHA algae oil undergoing accelerated storage. Finally, the DHA algae oil containing 80 mg/kg AP, 80 mg/kg VE, 40 mg/kg PA and 80 mg/kg TP had the highest oxidative stability. Furthermore, the shelf life of DHA algae oil containing the optimum composite antioxidant was predicted by using accelerated shelf life testing coupled with Arrhenius model, which was 3.80-fold longer than the control sample.


Assuntos
Antioxidantes/química , Ácidos Docosa-Hexaenoicos/química , Óleos/química , Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/química , Armazenamento de Alimentos , Oxirredução , Folhas de Planta/química , Polifenóis/química , Sasa/química , Chá/química , Substâncias Reativas com Ácido Tiobarbitúrico/química , Vitamina E/química
7.
Food Funct ; 10(12): 7714-7723, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31750473

RESUMO

Cranberries (Vaccinium macrocarpon) are full of polyphenols, which display various health benefits. Most studies have focused on extractable polyphenols (EPs) rather than non-extractable polyphenols (NEPs) but NEPs may possess important biological functions. The objective of this work was to characterize EP and NEP fractions from whole cranberries and determine their potential as anti-inflammation and anti-colon-cancer agents. Our results showed that of the identified polyphenols, anthocyanins were the major ones in the cranberry EP fraction, while phenolic acids were most abundant in the NEP fraction. The oxygen radical absorbance capacity (ORAC) of the NEPs was significantly higher than that of the EPs. Both the EPs and NEPs showed anti-inflammatory effects in inhibiting LPS-induced production of nitric oxide in macrophages. At the concentrations tested, the NEPs showed significantly higher inhibition of the production of nitric oxide in macrophages than the EPs, which was accompanied by decreased expression of inducible nitric oxide synthase (iNOS) and increased expression of HO-1. EP and NEP samples showed anti-cancer capacities in HCT116 cells. And the NEPs showed stronger inhibitory effects on the viability and colony formation capacity of human colon cancer HCT116 cells than the EPs. In a flow cytometry analysis, the NEPs caused cell cycle arrest at the G0/G1 phase and induced significant cellular apoptosis in colon cancer cells. Overall, our results suggested that both the EP and NEP fractions from cranberries were bioactive, and importantly, the NEP fraction showed promising anti-inflammation and anti-colon-cancer potential.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Vaccinium macrocarpon/química , Anti-Inflamatórios/química , Antineoplásicos/química , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Neoplasias do Colo/fisiopatologia , Frutas/química , Frutas/metabolismo , Células HCT116 , Heme Oxigenase-1/genética , Heme Oxigenase-1/imunologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Óxido Nítrico/imunologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Extratos Vegetais/química , Polifenóis/química , Vaccinium macrocarpon/metabolismo
8.
Food Funct ; 10(2): 893-902, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30694275

RESUMO

Isothiocyanates from cruciferous vegetables are known for their potential anti-carcinogenic activities. These isothiocyanates are frequently consumed together as part of a regular diet, but their combined effects on carcinogenesis have not been well studied. Herein, we tested the hypothesis that combination of two isothiocyanates, i.e. allyl isothiocyanate and sulforaphane, produced a synergy in inhibiting the growth of A549 lung cancer cells. Our results showed that the combination treatment led to a stronger growth inhibition than the singular treatment. Isobologram analysis proved that the enhanced inhibitory effect of the combination treatment was synergistic. Flow cytometry demonstrated that the combination treatment caused more extensive cell cycle arrest and apoptosis than the singular treatment with modified expression of key proteins regulating these cellular processes. The combined treatment resulted in the production of intracellular reactive oxygen species, which might contribute to the inhibitory effects on cancer cells. Moreover, a synergy between allyl isothiocyanate and sulforaphane was also observed in anti-cell migration. Collectively, our results have demonstrated the potential of different isothiocyanates used in combination to produce enhanced protective effects against carcinogenesis.


Assuntos
Anticarcinógenos/uso terapêutico , Antineoplásicos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Isotiocianatos/uso terapêutico , Células A549 , Anticarcinógenos/administração & dosagem , Anticarcinógenos/farmacocinética , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sinergismo Farmacológico , Conservantes de Alimentos/administração & dosagem , Conservantes de Alimentos/farmacocinética , Conservantes de Alimentos/uso terapêutico , Humanos , Isotiocianatos/administração & dosagem , Isotiocianatos/farmacocinética , Sulfóxidos
9.
Food Chem ; 281: 251-260, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30658755

RESUMO

Lipid hydrolysis and oxidation occurred in Argopecten irradians adductor muscle during hot air drying. Using an in vivo imaging system, we found that antioxidants of bamboo leaves (AOB) could diffuse into the adductor muscle upon marinating. Both tea polyphenols (TP) and AOB efficiently retarded lipid oxidation but had a slight effect on lipid hydrolysis during drying process. The in situ antioxidant mechanisms of AOB as well as TP were revealed, including quenching of free radicals detected by electron spin resonance, chelating metal ions determined by confocal laser scanning microscopy and inhibiting lipoxygenase. Less than 8% of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in AOB and TP marinated adductor muscle were decreased compared to more than 28% decrease in control adductor muscle during the drying process. Overall, these natural antioxidants, TP and AOB, efficiently maintained high nutritive value of adductor muscle, especially, their lipid quality.


Assuntos
Antioxidantes/análise , Dessecação , Manipulação de Alimentos , Pectinidae , Polifenóis/análise , Alimentos Marinhos/análise , Chá/química , Animais , Ácidos Docosa-Hexaenoicos/análise , Ácido Eicosapentaenoico/análise , Ácidos Graxos Insaturados/análise , Metabolismo dos Lipídeos , Valor Nutritivo , Fosforilcolina/análise , Extratos Vegetais/análise , Folhas de Planta/química , Sasa/química , Substâncias Reativas com Ácido Tiobarbitúrico/análise
10.
Nutr Cancer ; 70(7): 1126-1136, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30513211

RESUMO

Backgroud: (-)-Epigallocatechin-3-gallate (EGCG), the major component of green tea, is well documented to induce apoptosis and cell cycle arrest in cancer by targeting multiple signal transduction pathways. However, EGCG is extremely unstable in general culture conditions and rapidly degraded. So, to what extent EGCG or which degradation products of EGCG play a role in anti-tumor is still unknown. In this study, we evaluated the effect of different treatments of EGCG on HCT116 cells. DESIGN: MTT assay was applied to evaluated the inhibitory effect of different treatments of EGCG on HCT116 cells. Cell cycle and apoptosis were performed by flow cytometry. Finally, western blot analysis was used to elucidate the molecular mechanism associated with cell cycle arrest and apoptosis. RESULTS: Compared with control, both EGCG and O-EGCG (i.e., EGCG being pre-incubated at 37°C for 3 h) significantly inhibited HCT116 cells growth. Surprisingly, we found that the inhibitory effect of O-EGCG was stronger than that of EGCG. The IC50 values of EGCG and O-EGCG were 8.75 and 5.40 µM, respectively. Cell cycle analysis showed that 20 µM of EGCG simultaneously caused cell cycle arrest at G1 and G2 phase in HCT116 cells, differing from O-EGCG which exclusively caused cell cycle arrest at G2. This result suggested that parent EGCG at the early treatment might cause cell cycle arrest at G1. As time went on, EGCG disappeared and degraded products of EGCG were formed which might cause cell cycle arrest at G2. Further studies revealed that EGCG induced cell cycle arrest at G1 by downregulation of cyclin E and cyclin D1 and upregulation of p21. On the other hand, O-EGCG induced HCT116 cells apoptosis mainly by increasing the expression of p53 and cleaved caspase-3, which might be the underlying reason why O-EGCG had stronger inhibitory effect on HCT116 cells line than EGCG. CONCLUSIONS: The pretreatment of EGCG may be an effective way to enhance its antitumor effect.


Assuntos
Catequina/análogos & derivados , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Células CACO-2 , Catequina/administração & dosagem , Catequina/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Estabilidade de Medicamentos , Células HCT116 , Humanos , Proteínas/metabolismo
11.
J Agric Food Chem ; 66(47): 12521-12526, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30403136

RESUMO

Lipophenols such as palmitoyl esters of green-tea polyphenols (GTP) have been allowed for use as food additives for oxidation control. However, their digestive absorption remains unexplored. In this paper, the hydrolysis and transport characteristics of tyrosol acyl esters (TYr-Es) with various fatty acids (C12:0, C14:0, C16:0, C18:0, C18:1, and C18:2) were evaluated using the everted-rat-gut-sac model for the first time. HPLC-UV measurements demonstrated that TYr-Es were hydrolyzed to TYr, which contributed significantly to TYr transport across the sacs. The hydrolysis and transport rates correlated negatively with the chain lengths of their lipid moieties but showed a positive correlation with the degree of unsaturation. In general, all TYr-Es exhibited sustained-release behavior; therefore, the production of TYr-Es may serve as a useful way to prolong the duration of action and further improve the bioactivities of TYr.


Assuntos
Ésteres/metabolismo , Mucosa Intestinal/metabolismo , Álcool Feniletílico/análogos & derivados , Animais , Digestão , Ésteres/química , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Hidrólise , Masculino , Álcool Feniletílico/química , Álcool Feniletílico/metabolismo , Ratos , Ratos Sprague-Dawley
12.
Food Funct ; 9(10): 5115-5123, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30206627

RESUMO

Luteolin and sulforaphane are well-known food bioactives with anti-inflammatory properties. Herein, we determined their combinational effects in inhibiting inflammation in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Both luteolin and sulforaphane showed dose-dependent inhibition on LPS-induced production of nitric oxide (NO) in the macrophages. The combined treatments led to a stronger inhibition on NO production compared to the singular treatments. Isobologram analysis confirmed that the combined treatments produced a synergy. Western blotting and ELISA showed that the combined treatment reduced the expression levels of pro-inflammatory proteins involving NF-κB pathway, and STAT3 activation, which regulated expression of other inflammatory proteins such as iNOS, COX-2, IL-6, and IL-1ß. Moreover, the combination treatments reduced reactive oxygen species in cells and increased the expression of Nrf2 and HO-1, which are cellular antioxidant proteins. In conclusion, our findings support the notion that certain bioactive food components may act synergistically to produce enhanced health effects such as anti-inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Isotiocianatos/administração & dosagem , Luteolina/administração & dosagem , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/imunologia , Sinergismo Farmacológico , Heme Oxigenase-1/genética , Heme Oxigenase-1/imunologia , Humanos , Inflamação/genética , Inflamação/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Células RAW 264.7 , Espécies Reativas de Oxigênio/imunologia , Sulfóxidos
13.
Food Funct ; 9(7): 3610-3616, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-29968877

RESUMO

Lipophenols such as tea polyphenol palmitate derivatives (palmitoyl esters of tea polyphenols) have been classified as non-toxic food additives due to their better protective effects on lipidic food matrices from oxidation, but their digestion and absorption have remained unexplored. In this study, the digestive stability of tyrosol acyl esters (TYr-Es) with fatty acids of different chain lengths and different degrees of unsaturation such as C12:0, C14:0, C16:0, C18:0, C18:1, C18:2, and C22:6 was evaluated using an in vitro simulated gastrointestinal tract model containing various digestive enzymes (pancreatin, pancreatic lipase and phospholipase A2). HPLC-UV measurements demonstrated that only pancreatin and pancreatic lipase, but not phospholipase A2, could hydrolyze TYr-Es to free TYr. The degree of TYr-E hydrolysis negatively correlated with the chain length but positively correlated with the degree of unsaturation of their lipid moiety. In addition, the fact that TYr in fatty acid ester forms could be absorbed by the intestinal lumen, at least partially in the form of free TYr, may explain a sustained release behavior of TYr-Es to TYr during the time-course following the digestion process.


Assuntos
Ésteres/química , Trato Gastrointestinal/metabolismo , Álcool Feniletílico/análogos & derivados , Digestão , Ésteres/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Modelos Biológicos , Álcool Feniletílico/química , Álcool Feniletílico/metabolismo
14.
J Food Sci ; 83(5): 1258-1264, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29668030

RESUMO

Short-wavelength ultraviolet (UV-C) irradiation is a nonthermal processing technique that is a possible alternative to the heat-pasteurization of tea beverages. This study investigated the effect of UV-C irradiation on the polyphenolic and total phenolic contents of a green tea beverage and analyzed cytotoxicity of irradiated green tea using a novel continuous flow-through UV system. UV-C fluence levels ranging from 0 to 240 mJ/cm2 were delivered to green tea, and polyphenols were chemically profiled. Continuous-flow UV-C irradiation of the green tea beverage at a fluence of 68 mJ/cm2  induced a minor reduction in the concentration of the most abundant catechin in green tea, (-)-epigallocatechin gallate (EGCG), from 145 to 131.1 µg/mL. The total phenolic content of the green tea beverage was 0.19 µg GAE/uL and remained constant at all UV fluence levels. The UV-treated green tea beverage showed no cytotoxic effects on normal intestinal cells with healthy colonic cells (CCD-18Co) maintained at 90% viability for the UV-treated green tea beverages and the control. The treated and nontreated green tea have comparable inhibitory effects on the survival of human colon cancer cells. Overall, these results demonstrate that the UV-C irradiation did not significantly deplete catechins or produce cytotoxic byproducts. PRACTICAL APPLICATION: Short wavelength ultraviolet (UV-C) irradiation is a nonthermal processing technique that is a possible alternative to the heat pasteurization of tea beverages. This study investigated the effect of UV-C irradiation on the antioxidant concentration of green tea and analyzed cytotoxicity of irradiated a green tea beverage using a novel continuous flow-through UV system. The results demonstrated that the UV-C irradiation did not significantly deplete catechins or produce cytotoxic byproducts.


Assuntos
Antioxidantes/farmacologia , Catequina/farmacologia , Irradiação de Alimentos , Qualidade dos Alimentos , Chá/química , Raios Ultravioleta , Bebidas/análise , Células CACO-2 , Catequina/análogos & derivados , Catequina/análise , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Análise de Alimentos , Células HCT116 , Humanos , Polifenóis/análise , Espécies Reativas de Oxigênio/química , Espectrometria de Massas em Tandem
15.
Food Funct ; 9(3): 1601-1611, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29465116

RESUMO

Edible mushrooms are rich sources of bioactive components. In this study, a polyphenol-rich extract, designated as PPEP, was isolated from an edible mushroom, Pleurotus eryngii. Using ultra high performance liquid chromatograph combined with triple time-of-flight mass spectrometry (UPLC-TOF/MS/MS), gallic acid monohydrate, 3-(3,4-dihydroxyphenyl)-propionic acid, methyl gallate, syringic acid, ellagic acid and catechin were identified in PPEP. This phenolic-rich extract PPEP exhibited anti-inflammatory effect in lipopolysaccharide-stimulated RAW264.7 macrophages by inhibiting the overproduction of pro-inflammatory mediators including nitric oxide (NO) and reactive oxygen species (ROS). It was demonstrated that the anti-inflammatory effects of PPEP were associated with the inhibition of iNOS expression, suppression of p-IκB protein expression and inhibition of NF-κB and IκB mRNA expression. Next, the inhibitory effect of PPEP against human colon cancer cells was also determined. PPEP suppressed cell proliferation of human colon cancer HCT116 cells in a dose- and time-dependent fashion, while it showed no inhibitory effect on normal human colonic myofibroblasts CCD-18Co cells at the same tested concentrations (0-200 µg mL-1). Moreover, PPEP induced cell cycle arrest and led to extensive cellular apoptosis in human colon cancer cells, which was associated with the downregulation of cell cycle-related signaling protein, e.g. cyclin B and cyclin E, and the upregulation of apoptosis-related signaling protein caspase-3 and cleaved caspase-3. Overall, our results provided a basis for using PPEP as a promising preventive agent against inflammatory disease and colon cancer.


Assuntos
Anti-Inflamatórios/farmacologia , Neoplasias do Colo/fisiopatologia , Inibidores do Crescimento/farmacologia , Extratos Vegetais/farmacologia , Pleurotus/química , Polifenóis/farmacologia , Animais , Anti-Inflamatórios/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Inibidores do Crescimento/química , Células HCT116 , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , NF-kappa B/genética , NF-kappa B/imunologia , Óxido Nítrico/imunologia , Extratos Vegetais/química , Polifenóis/química , Células RAW 264.7 , Espécies Reativas de Oxigênio/imunologia , Espectrometria de Massas em Tandem
16.
Food Res Int ; 103: 59-67, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29389643

RESUMO

A continuous-flow UV reactor operating at 254nm wave-length was used to investigate inactivation of microorganisms including bacteriophage in coconut water, a highly opaque liquid food. UV-C inactivation kinetics of two surrogate viruses (MS2, T1UV) and three bacteria (E. coli ATCC 25922, Salmonella Typhimurium ATCC 13311, Listeria monocytogenes ATCC 19115) in buffer and coconut water were investigated (D10 values ranging from 2.82 to 4.54mJ·cm-2). A series of known UV-C doses were delivered to the samples. Inactivation levels of all organisms were linearly proportional to UV-C dose (r2>0.97). At the highest dose of 30mJ·cm-2, the three pathogenic organisms were inactivated by >5 log10 (p<0.05). Results clearly demonstrated that UV-C irradiation effectively inactivated bacteriophage and pathogenic microbes in coconut water. The inactivation kinetics of microorganisms were best described by log linear model with a low root mean square error (RMSE) and high coefficient of determination (r2>0.97). Models for predicting log reduction as a function of UV-C irradiation dose were found to be significant (p<0.05) with low RMSE and high r2. The irradiated coconut water showed no cytotoxic effects on normal human intestinal cells and normal mouse liver cells. Overall, these results indicated that UV-C treatment did not generate cytotoxic compounds in the coconut water. This study clearly demonstrated that high levels of inactivation of pathogens can be achieved in coconut water, and suggested potential method for UV-C treatment of other liquid foods. INDUSTRIAL RELEVANCE: This research paper provides scientific evidence of the potential benefits of UV-C irradiation in inactivating bacterial and viral surrogates at commercially relevant doses of 0-120mJ·cm-2. The irradiated coconut water showed no cytotoxic effects on normal intestinal and healthy mice liver cells. UV-C irradiation is an attractive food preservation technology and offers opportunities for horticultural and food processing industries to meet the growing demand from consumers for healthier and safe food products. This study would provide technical support for commercialization of UV-C treatment of beverages.


Assuntos
Cocos/microbiologia , Escherichia coli/efeitos da radiação , Manipulação de Alimentos/instrumentação , Microbiologia de Alimentos/instrumentação , Sucos de Frutas e Vegetais/microbiologia , Listeria monocytogenes/efeitos da radiação , Salmonella typhimurium/efeitos da radiação , Raios Ultravioleta , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cocos/toxicidade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Desenho de Equipamento , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/virologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Manipulação de Alimentos/métodos , Microbiologia de Alimentos/métodos , Sucos de Frutas e Vegetais/toxicidade , Levivirus/crescimento & desenvolvimento , Levivirus/efeitos da radiação , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/virologia , Listeriose/microbiologia , Listeriose/prevenção & controle , Intoxicação Alimentar por Salmonella/microbiologia , Intoxicação Alimentar por Salmonella/prevenção & controle , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/virologia , Fagos T/crescimento & desenvolvimento , Fagos T/efeitos da radiação , Raios Ultravioleta/efeitos adversos
17.
Food Funct ; 8(6): 2175-2183, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28524200

RESUMO

Edible mushrooms are rich sources of bioactive components. In this study, a bioactive protein, PEP, was isolated from an edible mushroom, Pleurotus eryngii, through (NH4)2SO4 precipitation and ion-exchange chromatography. Proteomic analysis by matrix assisted laser desorption ionization-time of flight mass spectrometry showed that PEP was a novel protein with a molecular weight of 40 kDa. PEP exhibited anti-inflammatory effects in LPS-stimulated RAW 264.7 macrophages by inhibiting the overproduction of pro-inflammatory mediators including nitric oxide (NO), cytokine IL-1ß and IL-6. It was further demonstrated that these anti-inflammatory effects of PEP were associated with the inhibition of inducible nitric oxide synthase (iNOS) expression, and the deactivation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Our results demonstrated that PEP might be a good candidate for anti-inflammation in the gastrointestinal tract, especially in the colon.


Assuntos
Anti-Inflamatórios/farmacologia , Proteínas Fúngicas/farmacologia , Pleurotus/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Interleucina-6/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , NF-kappa B/imunologia , Óxido Nítrico/imunologia , Óxido Nítrico Sintase Tipo II/imunologia , Proteômica , Células RAW 264.7
18.
Carcinogenesis ; 38(4): 455-464, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28207072

RESUMO

Different cancer chemopreventive agents may act synergistically and their combination may produce enhanced protective effects against carcinogenesis than each individual agent alone. Herein, we investigated the chemopreventive effects of nobiletin (NBT, a citrus polymethoxyflavone) and atorvastatin (ATST, a lipid-lowering drug) in colon cancer cells/macrophages and an azoxymethane (AOM)-induced colon carcinogenesis rat model. The results demonstrated that co-treatments of NBT/ATST produced enhanced growth inhibitory and anti-inflammatory effects on the colon cancer cells and macrophages, respectively. Isobologram analysis confirmed that these interactions between NBT and ATST were synergistic. NBT/ATST co-treatment also synergistically induced extensive cell cycle arrest and apoptosis in colon cancer cells. Oral administration of NBT (0.1%, w/w in diet) or ATST (0.04%, w/w in diet) significantly decreased colonic tumor incidence and multiplicity in AOM-treated rats. Most importantly, co-treatment of NBT/ATST at their half doses (0.05% NBT + 0.02% ATST, w/w in diet) resulted in even stronger inhibitory effects on colonic tumor incidence and multiplicity than did NBT or ATST alone at higher doses. Statistical analysis confirmed that the enhanced chemopreventive activities against colon carcinogenesis in rats by the NBT/ATST combination were highly synergistic. Our results further demonstrated that NBT/ATST co-treatment profoundly modulated key cellular signaling regulators associated with inflammation, cell proliferation, cell cycle progression, apoptosis, angiogenesis and metastasis in the colon of AOM-treated rats. In conclusion, for the first time, our results demonstrated a strong synergy in inhibiting colon carcinogenesis produced by the co-treatment of NBT and ATST, which provided a scientific basis for using NBT in combination with ATST for colon cancer chemoprevention in humans.


Assuntos
Anticarcinógenos/farmacologia , Atorvastatina/farmacologia , Carcinogênese/efeitos dos fármacos , Colo/efeitos dos fármacos , Neoplasias do Colo/prevenção & controle , Flavonas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Azoximetano/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimioprevenção/métodos , Colo/patologia , Neoplasias do Colo/patologia , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Células HT29 , Humanos , Masculino , Camundongos , Ratos , Ratos Endogâmicos F344
19.
J Agric Food Chem ; 64(41): 7812-7822, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27632812

RESUMO

UV-C irradiation operating at 254 nm wavelength on the polyphenolic and vitamin contents of apple juice including cytotoxicity analysis was studied. UV doses ranging from 0 to 150 mJ·cm-2 were selected for the treatments. Polyphenols (catechin, epicatechin, chlorogenic acid, and phloridzin) and vitamins (riboflavin, thiamine hydrochloride, pyridoxal hydrochloride, pyridoxine, pyridoxamine dihydrochloride, cyanocobalamin, choline chloride, biotin, niacin, and niacinamide) were chemically profiled. It was observed that UV treatment of apple juice at disinfection doses caused minor reductions (p < 0.05) in the concentrations of two main polyphenols (i.e., chlorogenic acid and epicatechin). In contrast, significant (p < 0.05) decreases in vitamin concentrations were observed (p < 0.05). The irradiated juice was evaluated for cytotoxic effects. The irradiated apple juice showed no cytotoxic effects on normal intestinal cells, and both irradiated and nonirradiated samples are significantly comparable in inhibiting the growth of human colon cancer cells. Overall, these results indicated that UV-C treatment of apple juice neither significantly degraded polyphenols nor generated cytotoxic compounds.

20.
J Food Sci ; 81(5): H1320-7, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27095513

RESUMO

Dietary components in combination may act synergistically and produce enhanced biological activities. Herein, we investigated the anti-inflammatory effects of 2 flavonoids, that is luteolin (LUT) and tangeretin (TAN) in combination. Lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages were treated with noncytotoxic concentrations of LUT, TAN, and their combinations. The results showed that LUT/TAN in combination produced synergistic inhibitory effects on LPS-stimulated production of nitric oxide (NO). ELISA results demonstrated that LUT/TAN in combination caused stronger suppression on the LPS-induced overexpression of proinflammatory mediators, such as prostaglandin E2 (PGE2 ), interleukin (IL)-1ß, and IL-6 than LUT or TAN alone. Immunoblotting and Real-Time PCR analyses showed that LUT/TAN combination significantly decreased LPS-induced protein and mRNA expression of inducible nitric oxide synthase and cyclooxygenase-2. These inhibitory effects of the combination treatment were stronger than those produced by LUT or TAN alone. Overall, our results demonstrated for the first time that combination of LUT and TAN produced synergistic anti-inflammatory effects in LPS-stimulated RAW 264.7 macrophages.


Assuntos
Anti-Inflamatórios/farmacologia , Flavonas/farmacologia , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Fitoterapia , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/biossíntese , Sinergismo Farmacológico , Flavonas/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos , Luteolina/farmacologia , Luteolina/uso terapêutico , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Extratos Vegetais/uso terapêutico , Células RAW 264.7 , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA