Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Tipo de estudo
Intervalo de ano de publicação
1.
Front Immunol ; 10: 2289, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608070

RESUMO

The main environmental risk factor associated with the development of Crohn's disease (CD) is cigarette smoking. Although the mechanism is still unknown, some studies have shown that cigarette exposure affects the intestinal barrier of the small bowel. Among the factors that may be involved in this process are Paneth cells. These specialized epithelial cells are located into the small intestine, and they are able to secrete antimicrobial peptides, having an essential role in the control of the growth of microorganisms. Alterations in its function are associated with inflammatory processes, such as CD. To study how cigarette components impact ileum homeostasis and Paneth cells integrity, we used intragastric administration of cigarette smoke condensate (CSC) in mice. Our results showed that inflammation was triggered after mucosal exposure of CSC, which induced particular alterations in Paneth cells granules, antimicrobial peptide production, and a reduction of bactericidal capacity. In fact, exposure to CSC generated an imbalance in the fecal bacterial population and increased the susceptibility of mice to develop ileal damage in response to bacterial infection. Moreover, our results obtained in mice unable to produce interleukin 10 (IL-10-/- mice) suggest that CSC treatment can induce a symptomatic enterocolitis with a pathological inflammation in genetically susceptible individuals.


Assuntos
Íleo/imunologia , Inflamação/imunologia , Mucosa Intestinal/imunologia , Produtos do Tabaco/efeitos adversos , Animais , Doença de Crohn/imunologia , Doença de Crohn/microbiologia , Íleo/microbiologia , Inflamação/microbiologia , Interleucina-10/imunologia , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Celulas de Paneth/imunologia , Celulas de Paneth/microbiologia
2.
Front Cell Neurosci ; 8: 403, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25520621

RESUMO

Nicotine, the most important neuroteratogen of tobacco smoke, can reproduce brain and cognitive disturbances per se when administered prenatally. However, it is still unknown if paracrine signaling among brain cells participates in prenatal nicotine-induced brain impairment of adult offspring. Paracrine signaling is partly mediated by unopposed channels formed by connexins hemichannels (HCs) and pannexins serving as aqueous pores permeable to ions and small signaling molecules, allowing exchange between the intra- and extracellular milieus. Our aim was to address whether prenatal nicotine exposure changes the activity of those channels in adult mice offspring under control conditions or subjected to a second challenge during young ages: high-fat/cholesterol (HFC) diet. To induce prenatal exposure to nicotine, osmotic minipumps were implanted in CF1 pregnant mice at gestational day 5 to deliver nicotine bitartrate or saline (control) solutions. After weaning, offspring of nicotine-treated or untreated pregnant mice were fed ad libitum with chow or HFC diets for 8 weeks. The functional state of connexin 43 (Cx43) and pannexin 1 (Panx1) unopposed channels was evaluated by dye uptake experiments in hippocampal slices from 11-week-old mice. We found that prenatal nicotine increased the opening of Cx43 HCs in astrocytes, and Panx1 channels in microglia and neurons only if offspring mice were fed with HFC diet. Blockade of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2) and prostaglandin E receptor 1 (EP1), ionotropic ATP receptor type 7 (P2X7) and NMDA receptors, showed differential inhibition of prenatal nicotine-induced channel opening in glial cells and neurons. Importantly, inhibition of the above mentioned enzymes and receptors, or blockade of Cx43 and Panx1 unopposed channels greatly reduced adenosine triphosphate (ATP) and glutamate release from hippocampal slices of prenatally nicotine-exposed offspring. We propose that unregulated gliotransmitter release through Cx43 and Panx1 unopposed channels may participate in brain alterations observed in offspring of mothers exposed to tobacco smoke during pregnancy.

3.
Brain Behav Immun ; 37: 187-96, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24380849

RESUMO

Aging is the main risk factor for Alzheimer's disease. Among other characteristics, it shows changes in inflammatory signaling that could affect the regulation of glial cell activation. We have shown that astrocytes prevent microglial cell cytotoxicity by mechanisms mediated by TGFß1. However, whereas TGFß1 is increased, glial cell activation persists in aging. To understand this apparent contradiction, we studied TGFß1-Smad3 signaling during aging and their effect on microglial cell function. TGFß1 induction and activation of Smad3 signaling in the hippocampus by inflammatory stimulation was greatly reduced in adult mice. We evaluated the effect of TGFß1-Smad3 pathway on the regulation of nitric oxide (NO) and reactive oxygen species (ROS) secretion, and phagocytosis of microglia from mice at different ages with and without in vivo treatment with lipopolysaccharide (LPS) to induce an inflammatory status. NO secretion was only induced on microglia from young mice exposed to LPS, and was potentiated by inflammatory preconditioning, whereas in adult mice the induction of ROS was predominant. TGFß1 modulated induction of NO and ROS production in young and adult microglia, respectively. Modulation was partially dependent on Smad3 pathway and was impaired by inflammatory preconditioning. Phagocytosis was induced by inflammation and TGFß1 only in microglia cultures from young mice. Induction by TGFß1 was also prevented by Smad3 inhibition. Our findings suggest that activation of the TGFß1-Smad3 pathway is impaired in aging. Age-related impairment of TGFß1-Smad3 can reduce protective activation while facilitating cytotoxic activation of microglia, potentiating microglia-mediated neurodegeneration.


Assuntos
Microglia/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Envelhecimento , Peptídeos beta-Amiloides/metabolismo , Animais , Hipocampo/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Fagocitose , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Mediators Inflamm ; 2013: 216402, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23737642

RESUMO

Microglia are the immune cells in the central nervous system. After injury microglia release bioactive molecules, including cytokines and ATP, which modify the functional state of hemichannels (HCs) and gap junction channels (GJCs), affecting the intercellular communication via extracellular and intracellular compartments, respectively. Here, we studied the role of extracellular ATP and several cytokines as modulators of the functional state of microglial HCs and GJCs using dye uptake and dye coupling techniques, respectively. In microglia and the microglia cell line EOC20, ATP advanced the TNF-α/IFN-γ-induced dye coupling, probably through the induction of IL-1ß release. Moreover, TNF-α/IFN-γ, but not TNF-α plus ATP, increased dye uptake in EOC20 cells. Blockade of Cx43 and Panx1 HCs prevented dye coupling induced by TNF-α/IFN-γ, but not TNF-α plus ATP. In addition, IL-6 prevented the induction of dye coupling and HC activity induced by TNF-α/IFN-γ in EOC20 cells. Our data support the notion that extracellular ATP affects the cellular communication between microglia through autocrine and paracrine mechanisms, which might affect the timing of immune response under neuroinflammatory conditions.


Assuntos
Citocinas/farmacologia , Junções Comunicantes/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Trifosfato de Adenosina , Animais , Western Blotting , Linhagem Celular , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Interferon gama/farmacologia , Interleucina-1beta/farmacologia , Interleucina-6/farmacologia , Camundongos , Microglia/citologia , Ratos , Fator de Necrose Tumoral alfa/farmacologia
5.
Biol. Res ; 38(4): 381-387, 2005. ilus, graf
Artigo em Inglês | LILACS | ID: lil-425822

RESUMO

Research on Alzheimer's disease (AD) focuses mainly on neuronal death and synaptic impairment induced by â-Amyloid peptide (Aâ), events at least partially mediated by astrocyte and microglia activation. However, substantial white matter damage and its consequences on brain function warrant the study of oligodendrocytes participation in the pathogenesis and progression of AD. Here, we analyze reports on oligodendrocytes' compromise in AD and discuss some experimental data indicative of Aâ toxicity in culture. We observed that 1 ìM of fibrilogenic Aâ peptide damages oligodendrocytes in vitro; while pro-inflammatory molecules (1 ìg/ml LPS + 1 ng/ml IFNã) or the presence of astrocytes reduced the Ab-induced damage. This agrees with our previous results showing an astrocyte-mediated protective effect over Aâ-induced damage on hippocampal cells and modulation of the activation of microglial cells in culture. Oligodendrocytes protection by astrocytes could be, either by reduction of Aâ fibrilogenesis/deposition or prevention of oxidative damage. Likewise, the decrease of Aâ-induced damage by proinflammatory molecules could reflect the production of trophic factors by activated oligodendrocytes and/or a metabolic activation as observed during myelination. Considering the association of inflammation with neurodegenerative diseases, oligodendrocytes impairment in AD patients could potentiate cell damage under pathological conditions.


Assuntos
Animais , Doença de Alzheimer/complicações , Oligodendroglia , Peptídeos beta-Amiloides/toxicidade , Inflamação/induzido quimicamente
6.
Biol. Res ; 34(2): 123-128, 2001. ilus, tab, graf
Artigo em Inglês | LILACS | ID: lil-303013

RESUMO

Brain glial cells secrete several molecules that can modulate the survival of neurons after various types of damage to the CNS. Activated microglia and astrocytes closely associate to amyloid plaques in Alzheimer Disease (AD). They could have a role in the neurotoxicity observed in AD because of the inflammatory reaction they generate. There is controversy regarding the individual part played by the different glial cells, and the interrelationships between them. Both astrocytes and microglia produce several cytokines involved in the inflammatory reaction. Moreover, the same cytokines may have different effects, depending on their concentration and the type of cells in the vicinity. In turn, the events occurring in response to injury may lead to changes in the nature and relative concentration of the various factors involved. To learn about these putative glial interrelationships, we examined some effects of astrocytes on microglial activation.


Assuntos
Animais , Ratos , Doença de Alzheimer , Citocinas , Microglia , Doença de Alzheimer , Comunicação Celular , Técnicas de Cultura de Células , Microglia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA