Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Am J Med Genet C Semin Med Genet ; 184(4): 955-964, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33258288

RESUMO

Rare diseases comprise a diverse group of conditions, most of which involve genetic causes. We describe the variable spectrum of findings and clinical impacts of exome sequencing (ES) in a cohort of 500 patients with rare diseases. In total, 164 primary findings were reported in 158 patients, representing an overall diagnostic yield of 31.6%. Most of the findings (61.6%) corresponded to autosomal dominant conditions, followed by autosomal recessive (25.6%) and X-linked (12.8%) conditions. These patients harbored 195 variants, among which 43.6% are novel in the literature. The rate of molecular diagnosis was considerably higher for prenatal samples (67%; 4/6), younger children (44%; 24/55), consanguinity (50%; 3/6), gastrointestinal/liver disease (44%; 16/36) and syndromic/malformative conditions (41%; 72/175). For 15.6% of the cohort patients, we observed a direct potential for the redirection of care with targeted therapy, tumor screening, medication adjustment and monitoring for disease-specific complications. Secondary findings were reported in 37 patients (7.4%). Based on cost-effectiveness studies in the literature, we speculate that the reports of secondary findings may influence an increase of 123.2 years in the life expectancy for our cohort, or 0.246 years/cohort patient. ES is a powerful method to identify the molecular bases of monogenic disorders and redirect clinical care.


Assuntos
Exoma , Doenças Raras , Criança , Estudos de Coortes , Consanguinidade , Exoma/genética , Feminino , Humanos , Gravidez , Doenças Raras/diagnóstico , Doenças Raras/genética , Sequenciamento do Exoma
2.
Breast Cancer Res Treat ; 167(3): 803-814, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29116469

RESUMO

PURPOSE: BRCA1 germline mutation is closely associated with triple-negative breast cancer. BRCA deficiency leads to impaired DNA repair and tumor development, and understanding this deficiency, in both hereditary and sporadic scenarios, is of great clinical and biological interest. Here, we investigated germline or somatic events that might lead to BRCA1 impairment in triple-negative breast cancer. We also analyzed the clinical implications associated with BRCA deficiency. METHODS: Next-generation sequencing for the BRCA1/2 genes and multiplex ligation-dependent probe amplification (MLPA) for the BRCA1 gene were performed for mutation screening. A customized bisulfite next-generation sequencing approach was used for assessing BRCA1 promoter methylation status in tumor tissue. RESULTS: A total of 131 triple-negative cases were assessed, and germline pathogenic variants were detected in 13.0% of all cases and in 26% of cases diagnosed in young women. Most germline pathogenic variants (88.2%) occurred in the BRCA1 gene. BRCA1 promoter hypermethylation was detected in 20.6% of tumors; none of these tumors were in BRCA1/2 pathogenic variant carriers. BRCA1 impairment by either germline or somatic events was significantly more frequent in young women (55% in those ≤ 40 years; 33% in those 41-50 years; 22% in those > 50 years of age) and associated with better overall and disease-free survival rates in this group of patients. CONCLUSIONS: BRCA1 deficiency was recurrent in early-onset triple-negative breast cancer in Brazilian patients and associated with improved survival. With the new treatment modalities being investigated, including poly (ADP-ribose)-polymerase (PARP) inhibitor therapy, our results suggest that a significant proportion of young women with this subtype of tumor might benefit from PARP inhibitor treatment, which warrants further investigation.


Assuntos
Proteína BRCA1/genética , Metilação de DNA/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Adolescente , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Proteína BRCA2/genética , Intervalo Livre de Doença , Feminino , Mutação em Linhagem Germinativa/genética , Heterozigoto , Humanos , Pessoa de Meia-Idade , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Regiões Promotoras Genéticas , Neoplasias de Mama Triplo Negativas/epidemiologia , Neoplasias de Mama Triplo Negativas/patologia , Adulto Jovem
3.
Appl. cancer res ; 37: 1-6, 2017. tab, ilus
Artigo em Inglês | LILACS, Inca | ID: biblio-911548

RESUMO

Recent findings coming from human proteome research employing mass-spectrometry and ribosomal profiling methods have provided evidence for the translation of non-annotated coding sequence (CDSs) into alternative proteins (APs). The presence of APs in many human tissues and cell lines may become an important issue in genome sciences, especially in cancer genomics where the frequency of alternative proteins seems to be 10-fold higher than normal tissues. Finding new proteins can impact medical research by filling gaps in known molecular pathways or revealing new molecular markers and therapeutic targets. Among the cellular processes possibly involved in protein diversity, alternative splicing (AS) is the most cited, and it consists of an often-regulated mechanism that generates different mRNAs from the same gene, contributing to the functional diversity of mammalian cells. In the past, evidence for AS from multi-exon genes have come mainly from expression sequence tag (EST) data; only recently has mass-spectrometry (MS) been used to investigate the translation of alternative transcripts. Exploration of human MS data has detected tens to hundreds of alternative proteins in normal tissues, and thousands in cancer cell lines, suggesting that alternative proteins may have an important role in cancer. Analysis of MS data has revealed a vastly diverse AP repertoire, with some of this diversity being exclusively detected in cancer cells. Proteomic characterization of 20 breast cancer cell lines revealed a surprising 1,860 protein variants resulting from AS. Among these, 4 AP are clearly involved in cancer. A truncated variant of the NF- kB p65 subunit, a truncated form of the focal adhesion kinase PTK2 and two CD47 transmembrane receptor protein variants. Until now, little is known about the functional differences between these variants. Another cellular mechanism that possibly creates protein diversity is the alternative usage of translation initiation site (TIS). Detection of TIS is made possible by the Ribosome Profiling (RP) method. The principle of this technique is to capture mRNA translation by freezing the actively translating ribosomes onto transcripts, and then separating them by ultracentrifugation. Recently, RP was applied to mouse embryonic fibroblast cells and human HEK293 cells. The results revealed that the majority of mRNAs contain more than one translation initiation site (TIS), with more than 50% of the detected TISs mapping to alternative ORFs. In this review, we present a list of human alternative proteins validated by small and large-scale experimental methods. We also highlight that APs are probably not a secondary product of inaccurate splicing or translational process and most likely play an important role in the tumorigenic process. Thus, APs constitutes a promising research line for basic and clinical aspects of cancer (AU)


Assuntos
Humanos , Espectrometria de Massas , Linhagem Celular , Processamento Alternativo , Proteômica , Neoplasias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA