Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Biomolecules ; 14(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38540702

RESUMO

Age-related changes in the mitochondrial status of human cumulus cells (hCCs) impact oocyte quality; however, the relationship between hCC mitochondrial (dys)function and reproductive aging remains poorly understood. This study aimed to establish the interplay between hCC mitochondrial dysfunction and women's reproductive potential. In this investigation, 266 women were enrolled and categorized into two groups based on their age: a young group (<35 years old) and an advanced maternal age (AMA) group (≥35 years old). Comprehensive analysis of reproductive outcomes was conducted in our population. Various mitochondrial-related parameters were analyzed across distinct subsets. Specifically, mitochondrial membrane potential (∆Ψm) and mitochondrial mass were examined in 53 samples, mtDNA content in 25 samples, protein levels in 23 samples, bioenergetic profiles using an XF24 Extracellular Flux Analyzer in 6 samples, and levels of reactive oxygen species (ROS) and adenosine triphosphate (ATP) in 39 and 43 samples, respectively. In our study, the reproductive potential of AMA women sharply decreased, as expected. Additionally, an impairment in the mitochondrial function of hCCs in older women was observed; however, no differences were found in terms of mitochondrial content. Regarding oxidative phosphorylation, metabolic profiling of hCCs from AMA women indicated a decrease in respiratory capacity, which was correlated with an age-dependent decrease in the ATP synthase (ATP5A1) protein level. However, intracellular ROS and ATP levels did not differ between groups. In conclusion, our study indicates that age-related dysfunction in hCCs is associated with impaired mitochondrial function, and, although further studies are required, ATP synthase could be relevant in this impairment.


Assuntos
Células do Cúmulo , Doenças Mitocondriais , Humanos , Feminino , Idoso , Adulto , Células do Cúmulo/metabolismo , Trifosfato de Adenosina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo
2.
Pharmaceutics ; 16(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38399261

RESUMO

Reversine is a purine derivative that has been investigated with regard to its biological effects, such as its anticancer properties and, mostly, its ability to induce the dedifferentiation of adult cells, increasing their plasticity. The obtained dedifferentiated cells have a high potential for use in regenerative procedures, such as regenerative dentistry (RD). Instead of replacing the lost or damaged oral tissues with synthetic materials, RD uses stem cells combined with matrices and an appropriate microenvironment to achieve tissue regeneration. However, the currently available stem cell sources present limitations, thus restricting the potential of RD. Based on this problem, new sources of stem cells are fundamental. This work aims to characterize mouse gingival fibroblasts (GFs) after dedifferentiation with reversine. Different administration protocols were tested, and the cells obtained were evaluated regarding their cell metabolism, protein and DNA contents, cell cycle changes, morphology, cell death, genotoxicity, and acquisition of stem cell characteristics. Additionally, their teratoma potential was evaluated after in vivo transplantation. Reversine caused toxicity at higher concentrations, with decreased cell metabolic activity and protein content. The cells obtained displayed polyploidy, a cycle arrest in the G2/M phase, and showed an enlarged size. Additionally, apoptosis and genotoxicity were found at higher reversine concentrations. A subpopulation of the GFs possessed stem properties, as supported by the increased expression of CD90, CD105, and TERT, the existence of a CD106+ population, and their trilineage differentiation capacity. The dedifferentiated cells did not induce teratoma formation. The extensive characterization performed shows that significant functional, morphological, and genetic changes occur during the dedifferentiation process. The dedifferentiated cells have some stem-like characteristics, which are of interest for RD.

3.
Cureus ; 15(3): e35690, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37012960

RESUMO

INTRODUCTION: Polycystic ovary syndrome (PCOS) is a common endocrine disorder often leading to anovulatory infertility. PCOS pathophysiology is still unclear and several potential genetic susceptibility factors have been proposed. The effect of polymorphisms in two genesrelated to follicular recruitment and development, the follicle-stimulating hormone receptor (FSHR) and the estrogen receptor 1 (ESR1), have been studied in different populations with contradictory results. AIMS: To evaluate the influence of FSHR rs6166 (c.2039A>G) and of ESR1 rs2234693 (Pvull c.453-397 T > C) polymorphisms on PCOS risk, phenotype, and response to controlled ovarian stimulation (COS). MATERIALS AND METHODS: Genotyping of the FSHR rs6166 and the ESR1 rs2234693 polymorphisms was performed in PCOS women and a control group undergoing in vitro fertilization (IVF). Demographic, clinical, and biochemical data, genotype frequency, and IVF outcomes were compared between groups. RESULTS: We evaluated 88 PCOS women and 80 controls. There was no significant difference in the genotype distribution of FSHR rs6166 polymorphism between PCOS women and controls (AA 31.8%/AS 48.9%/SS 19.3% in PCOS women vs AA 37.5%/AS 40.0%/SS 22.5% in controls; p = 0.522). The same was true for the ESR1 rs2234693 (CC 24.1%/CT 46.0%/TT 29.9% in PCOS women vs CC 18.8%/CT 48.8%/TT 32.5% in controls; p = 0.697). In PCOS women, we found higher follicle-stimulating hormone (FSH) levels on the third day of the menstrual cycle associated with the SS variant of the FSHR polymorphism (9.2 vs 6.2 ± 1.6 and 5.6 ± 1.6 mUI/mL; p = 0.011). We did not find other associations between the baseline hormonal parameters, antral follicle count, and response measures to COS with FSHR or ESR1 genotypes. We found, however, a need for higher cumulative doses of FSH for COS in patients with the SS variant of the FSHR rs6166 polymorphism (1860.5 ± 627.8 IU for SSvs 1498.1 ± 359.3 for AA and 1425.4 ± 474.8 for SA; p = 0.046 and p = 0.046). CONCLUSION: Our data suggest that in the population, FSHR rs6166and ESR1 rs2234693 polymorphisms do not influence the risk of developing PCOS nor do they influence the patient's phenotype and IVF success. However, the SS variant of the FSHR rs6166 polymorphism may be associated with FSH resistance requiring higher FSH doses for COS.

4.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430764

RESUMO

Amino acids are crucial nutrients involved in several cellular and physiological processes, including fertilization and early embryo development. In particular, Leucine and Arginine have been shown to stimulate implantation, as lack of both in a blastocyst culture system is able to induce a dormant state in embryos. The aim of this work was to evaluate the effects of Leucine and Arginine withdrawal on pluripotent mouse embryonic stem cell status, notably, their growth, self-renewal, as well as glycolytic and oxidative metabolism. Our results show that the absence of both Leucine and Arginine does not affect mouse embryonic stem cell pluripotency, while reducing cell proliferation through cell-cycle arrest. Importantly, these effects are not related to Leukemia Inhibitory Factor (LIF) and are reversible when both amino acids are reconstituted in the culture media. Moreover, a lack of these amino acids is related to a reduction in glycolytic and oxidative metabolism and decreased protein translation in mouse embryonic stem cells (mESCs), while maintaining their pluripotent status.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Leucina/farmacologia , Leucina/metabolismo , Arginina/farmacologia , Arginina/metabolismo , Diferenciação Celular , Proliferação de Células
5.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35409106

RESUMO

Mesenchymal stem cells reside under precise hypoxic conditions that are paramount in determining cell fate and behavior (metabolism, proliferation, differentiation, etc.). In this work, we show that different oxygen tensions promote a distinct proliferative response and affect the biosynthetic demand and global metabolic profile of umbilical cord-mesenchymal stem cells (UC-MSCs). Using both gas-based strategies and CoCl2 as a substitute for the costly hypoxic chambers, we found that specific oxygen tensions influence the fate of UC-MSCs differently. While 5% O2 potentiates proliferation, stimulates biosynthetic pathways, and promotes a global hypermetabolic profile, exposure to <1% O2 contributes to a quiescent-like cell state that relies heavily on anaerobic glycolysis. We show that using CoCl2 as a hypoxia substitute of moderate hypoxia has distinct metabolic effects, when compared with gas-based strategies. The present study also highlights that, while severe hypoxia regulates global translation via mTORC1 modulation, its effects on survival-related mechanisms are mainly modulated through mTORC2. Therefore, the experimental conditions used in this study establish a robust and reliable hypoxia model for UC-MSCs, providing relevant insights into how stem cells are influenced by their physiological environment, and how different strategies of modulating hypoxia may influence experimental outcomes.


Assuntos
Células-Tronco Mesenquimais , Diferenciação Celular , Hipóxia Celular , Proliferação de Células , Células Cultivadas , Humanos , Hipóxia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo
6.
Eur J Clin Invest ; 51(10): e13521, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33587759

RESUMO

Compelling evidence has shown that parental experiences and age at conception may potentially shape the future health of the next generation(s). Certain factors may affect both the female and, strikingly, the male gametes potentially causing the transmission of acquired traits, which was strongly defended by Jean-Baptiste Lamarck. Neurodevelopmental psychiatric disorders, trinucleotide repeat-associated diseases, cardiovascular pathologies, diabetes, obesity and cancer in the offspring, among others, have now been associated with events occurring at the preconception level. The potential implications of a (trans)generational inheritance of parental disease and exposure effects should be taken into account in counselling and public policy. Further research into how exactly gametes apparently deliver more than DNA to a new generation is warranted.


Assuntos
Desenvolvimento Fetal , Oócitos/fisiologia , Espermatozoides/fisiologia , Animais , Humanos , Masculino
7.
Biochim Biophys Acta Mol Basis Dis ; 1866(7): 165760, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32151634

RESUMO

Metabolism, is a transversal hot research topic in different areas, resulting in the integration of cellular needs with external cues, involving a highly coordinated set of activities in which nutrients are converted into building blocks for macromolecules, energy currencies and biomass. Importantly, cells can adjust different metabolic pathways defining its cellular identity. Both cancer cell and embryonic stem cells share the common hallmark of high proliferative ability but while the first represent a huge social-economic burden the second symbolize a huge promise. Importantly, research on both fields points out that stem cells share common metabolic strategies with cancer cells to maintain their identity as well as proliferative capability and, vice versa cancer cells also share common strategies regarding pluripotent markers. Moreover, the Warburg effect can be found in highly proliferative non-cancer stem cells as well as in embryonic stem cells that are primed towards differentiation, while a bivalent metabolism is characteristic of embryonic stem cells that are in a true naïve pluripotent state and cancer stem cells can also range from glycolysis to oxidative phosphorylation. Therefore, this review aims to highlight major metabolic similarities between cancer cells and embryonic stem cells demonstrating that they have similar strategies in both signaling pathways regulation as well as metabolic profiles while focusing on key metabolites.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias/metabolismo , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Metabolismo Energético/genética , Glicólise/genética , Humanos , Redes e Vias Metabólicas/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Fosforilação Oxidativa
8.
Int J Mol Sci ; 20(16)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426291

RESUMO

Mitochondria play a central role in non-alcoholic fatty liver disease (NAFLD) progression and in the control of cell death signalling during the progression to hepatocellular carcinoma (HCC). Associated with the metabolic syndrome, NAFLD is mostly driven by insulin-resistant white adipose tissue lipolysis that results in an increased hepatic fatty acid influx and the ectopic accumulation of fat in the liver. Upregulation of beta-oxidation as one compensatory mechanism leads to an increase in mitochondrial tricarboxylic acid cycle flux and ATP generation. The progression of NAFLD is associated with alterations in the mitochondrial molecular composition and respiratory capacity, which increases their vulnerability to different stressors, including calcium and pro-inflammatory molecules, which result in an increased generation of reactive oxygen species (ROS) that, altogether, may ultimately lead to mitochondrial dysfunction. This may activate further pro-inflammatory pathways involved in the progression from steatosis to steatohepatitis (NASH). Mushroom-enriched diets, or the administration of their isolated bioactive compounds, have been shown to display beneficial effects on insulin resistance, hepatic steatosis, oxidative stress, and inflammation by regulating nutrient uptake and lipid metabolism as well as modulating the antioxidant activity of the cell. In addition, the gut microbiota has also been described to be modulated by mushroom bioactive molecules, with implications in reducing liver inflammation during NAFLD progression. Dietary mushroom extracts have been reported to have anti-tumorigenic properties and to induce cell-death via the mitochondrial apoptosis pathway. This calls for particular attention to the potential therapeutic properties of these natural compounds which may push the development of novel pharmacological options to treat NASH and HCC. We here review the diverse effects of mushroom-enriched diets in liver disease, emphasizing those effects that are dependent on mitochondria.


Assuntos
Agaricales , Antioxidantes/uso terapêutico , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Hepatopatia Gordurosa não Alcoólica/terapia , Agaricales/química , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Alimento Funcional/análise , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
9.
PLoS One ; 13(2): e0191912, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29414992

RESUMO

The reduced number of animals in most wild felid populations implies a loss of genetic diversity. The death of juveniles, prior to the production of mature sperm, represents a loss of potential genetic contribution to future populations. Since 2011 mouse testicular organ culture has introduced an alternative mechanism to produce sperm in vitro from immature tissue. However, extension of this technology to other species has remained limited. We have used the domestic cat (Felis catus) as a model for wild felids to investigate spermatogenesis initiation and regulation, with the mouse serving as a control species. Testicular tissue fragments were cultured in control medium or medium supplemented with knockout serum replacement (KSR), AlbuMax, beta-estradiol or AlbuMax plus beta-estradiol. Contrary to expectations, and unlike results obtained in mouse controls, no germ cell differentiation could be detected. The only germ cells observed after six weeks of culture were spermatogonia regardless of the initial stage of tubule development in the donor tissue. Moreover, the number of spermatogonia decreased with time in culture in all media tested, especially in the medium supplemented with KSR, while AlbuMax had a slight protective effect. The combination of AlbuMax and beta-estradiol led to an increase in the area occupied by seminiferous tubules, and thus to an increase in total number of spermatogonial cells. Considering all the media combinations tested the stimulus for felid germ cell differentiation in this type of system seems to be different from the mouse. Studies using other triggers of differentiation and tissue survival factors should be performed to pursue this technology for the genetic diversity preservation in wild felids.


Assuntos
Espermatogênese , Animais , Gatos , Estradiol/administração & dosagem , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Especificidade da Espécie , Testículo/citologia
10.
J Reprod Immunol ; 119: 85-90, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27523927

RESUMO

To establish a healthy pregnancy the maternal immune system must tolerate fetal allo-antigens, yet remain competent to respond to infections. The ability of decidual NK cells (dNK) to promote migration of fetal extravillous trophoblasts (EVT) and placental growth as well as the capacity of EVT to promote immune tolerance are topics of high interest and extensive research. However, the problem of how dNK and decidual CD8+ T cells (CD8+ dT) provide immunity to infections of the placenta and the mechanisms that regulate their cytolytic function has thus far largely been ignored. Fetal EVT are the most invasive cells of the placenta and directly interact with maternal decidual immune cells at this maternal-fetal interface. Besides the expression of non-polymorphic HLA-E and HLA-G molecules that are associated with immune tolerance, EVT also express highly polymorphic HLA-C molecules that can serve as targets for maternal dNK and CD8+ dT responses. HLA-C expression by EVT has a dual role as the main molecule to which immune tolerance needs to be established and as the only molecule that can present pathogen-derived peptides and provide protective immunity when EVT are infected. The focus of this review is to address the regulation of cytotoxicity of dNK and CD8+ dT, which is essential for maternal-fetal immune tolerance as well as recent evidence that both cell types can provide immunity to infections at the maternal-fetal interface. A particular emphasis is given to the role of HLA-C expressed by EVT and its capacity to elicit dNK and CD8+ dT responses.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Decídua/imunologia , Infecções/imunologia , Células Matadoras Naturais/imunologia , Trofoblastos/imunologia , Imunidade Adaptativa , Citotoxicidade Imunológica , Feminino , Antígenos HLA-C/metabolismo , Humanos , Tolerância Imunológica , Imunidade Inata , Imunidade Materno-Adquirida , Circulação Placentária , Gravidez
11.
Food Chem Toxicol ; 87: 148-56, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26683311

RESUMO

Kaempferol (3,4',5,7-tetrahydroxyflavone) is a natural flavonoid with several beneficial and protective effects. It has been demonstrated that kaempferol has anticancer properties, particularly due to its effects on proliferation, apoptosis and the cell cycle. However, possible effects on pluripotent embryonic stem cell function have not yet been addressed. Embryonic stem cells have the ability to self-renew and to differentiate into all three germ layers with potential applications in regenerative medicine and in vitro toxicology. We show that exposure of murine embryonic stem cells (mESC) to high concentrations of kaempferol (200 µM) leads to decreased cell numbers, although the resulting smaller cell colonies remain pluripotent. However, lower concentrations of this compound (20 µM) increase the expression of pluripotency markers in mESCs. Mitochondrial membrane potential and mitochondrial mass are not affected, but a dose-dependent increase in apoptosis takes place. Moreover, mESC differentiation is impaired by kaempferol, which was not related to apoptosis induction. Our results show that low concentrations of kaempferol can be beneficial for pluripotency, but inhibit proper differentiation of mESCs. Additionally, high concentrations induce apoptosis and increase mitochondrial reactive oxygen species (ROS).


Assuntos
Células-Tronco Embrionárias/efeitos dos fármacos , Quempferóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Quempferóis/administração & dosagem , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Necrose , Superóxidos/metabolismo
12.
PLoS One ; 10(8): e0135617, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26266544

RESUMO

BACKGROUND: Pluripotent embryonic stem cells grown under standard conditions (ESC) have a markedly glycolytic profile, which is shared with many different types of cancer cells. Thus, some therapeutic strategies suggest that pharmacologically shifting cancer cells towards an oxidative phenotype, using glycolysis inhibitors, may reduce cancer aggressiveness. Given the metabolic parallels between cancer and stemness would chemotherapeutical agents have an effect on pluripotency, and could a strategy involving these agents be envisioned to modulate stem cell fate in an accessible manner? In this manuscript we attempted to determine the effects of 3-bromopyruvate (3BrP) in pluripotency. Although it has other intracellular targets, this compound is a potent inhibitor of glycolysis enzymes thought to be important to maintain a glycolytic profile. The goal was also to determine if we could contribute towards a pharmacologically accessible metabolic strategy to influence cell differentiation. METHODOLOGY/PRINCIPAL FINDINGS: Mouse embryonic stem cells (mESC) grown under standard pluripotency conditions (in the presence of Leukemia Inducing Factor- LIF) were treated with 3BrP. As a positive control for differentiation other mESCs were grown without LIF. Overall our results demonstrate that 3BrP negatively affects pluripotency, forcing cells to become less glycolytic and with more active mitochondria. These changes in metabolism are correlated with increased differentiation, even under pluripotency conditions (i.e. in the presence of LIF). However, 3BrP also significantly impaired cell function, and may have other roles besides affecting the metabolic profile of mESCs. CONCLUSIONS/FINDINGS: Treatment of mESCs with 3BrP triggered a metabolic switch and loss of pluripotency, even in the presence of LIF. Interestingly, the positive control for differentiation allowed for a distinction between 3BrP effects and changes associated with spontaneous differentiation/loss of pluripotency in the absence of LIF. Additionally, there was a slight differentiation bias towards mesoderm in the presence of 3BrP. However, the side effects on cellular function suggest that the use of this drug is probably not adequate to efficiently push cells towards specific differentiation fates.


Assuntos
Células-Tronco Embrionárias/efeitos dos fármacos , Piruvatos/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Células-Tronco Embrionárias/citologia , Citometria de Fluxo , Glicólise/efeitos dos fármacos , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos
13.
Biomaterials ; 69: 76-88, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26283155

RESUMO

Breast cancer stem cells (CSC) are thought responsible for tumor growth and relapse, metastization and active evasion to standard chemotherapy. The recognition that CSC may originate from non-stem cancer cells (non-SCC) through plastic epithelial-to-mesenchymal transition turned these into relevant cell targets. Of crucial importance for successful therapeutic intervention is the identification of surface receptors overexpressed in both CSC and non-SCC. Cell surface nucleolin has been described as overexpressed in cancer cells as well as a tumor angiogenic marker. Herein we have addressed the questions on whether nucleolin was a common receptor among breast CSC and non-SCC and whether it could be exploited for targeting purposes. Liposomes functionalized with the nucleolin-binding F3 peptide, targeted simultaneously, nucleolin-overexpressing putative breast CSC and non-SCC, which was paralleled by OCT4 and NANOG mRNA levels in cells from triple negative breast cancer (TNBC) origin. In murine embryonic stem cells, both nucleolin mRNA levels and F3 peptide-targeted liposomes cellular association were dependent on the stemness status. An in vivo tumorigenic assay suggested that surface nucleolin overexpression per se, could be associated with the identification of highly tumorigenic TNBC cells. This proposed link between nucleolin expression and the stem-like phenotype in TNBC, enabled 100% cell death mediated by F3 peptide-targeted synergistic drug combination, suggesting the potential to abrogate the plasticity and adaptability associated with CSC and non-SCC. Ultimately, nucleolin-specific therapeutic tools capable of simultaneous debulk multiple cellular compartments of the tumor microenvironment may pave the way towards a specific treatment for TNBC patient care.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Ceramidas/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Fosfoproteínas/genética , Proteínas de Ligação a RNA/genética , Sequência de Aminoácidos , Animais , Antibióticos Antineoplásicos/farmacologia , Mama/efeitos dos fármacos , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ceramidas/farmacologia , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Feminino , Humanos , Lipossomos/química , Lipossomos/metabolismo , Camundongos , Dados de Sequência Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Peptídeos/química , Peptídeos/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Regulação para Cima , Nucleolina
14.
PLoS One ; 10(7): e0131663, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26147621

RESUMO

INTRODUCTION: The pyruvate dehydrogenase (PDH) complex is localized in the mitochondrial matrix catalyzing the irreversible decarboxylation of pyruvate to acetyl-CoA and NADH. For proper complex regulation the E1-α subunit functions as an on/off switch regulated by phosphorylation/dephosphorylation. In different cell types one of the four-pyruvate dehydrogenase kinase isoforms (PDHK1-4) can phosphorylate this subunit leading to PDH inactivation. Our previous results with human Embryonic Stem Cells (hESC), suggested that PDHK could be a key regulator in the metabolic profile of pluripotent cells, as it is upregulated in pluripotent stem cells. Therefore, we wondered if metabolic modulation, via inexpensive pharmacological inhibition of PDHK, could impact metabolism and pluripotency. METHODS/RESULTS: In order to assess the importance of the PDH cycle in mouse Embryonic Stem Cells (mESC), we incubated cells with the PDHK inhibitor dichloroacetate (DCA) and observed that in its presence ESC started to differentiate. Changes in mitochondrial function and proliferation potential were also found and protein levels for PDH (both phosphorylated and non-phosphorylated) and PDHK1 were monitored. Interestingly, we were also able to describe a possible pathway that involves Hif-1α and p53 during DCA-induced loss of pluripotency. Results with ESCs treated with DCA were comparable to those obtained for cells grown without Leukemia Inhibitor Factor (LIF), used in this case as a positive control for differentiation. CONCLUSIONS: DCA negatively affects ESC pluripotency by changing cell metabolism and elements related to the PDH cycle, suggesting that PDHK could function as a possible metabolic gatekeeper in ESC, and may be a good target to modulate metabolism and differentiation. Although further molecular biology-based experiments are required, our data suggests that inactive PDH favors pluripotency and that ESC have similar strategies as cancer cells to maintain a glycolytic profile, by using some of the signaling pathways found in the latter cells.


Assuntos
Ácido Dicloroacético/farmacologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Complexo Piruvato Desidrogenase/antagonistas & inibidores , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/enzimologia , Glicólise , Camundongos , Fosforilação Oxidativa
15.
Curr Med Chem ; 22(20): 2493-504, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25973982

RESUMO

Mitochondria are responsible for coordinating cellular energy production in the vast majority of somatic cells, and every cell type in a specific state can have a distinct metabolic signature. The metabolic requirements of cells from different tissues changes as they proliferate/differentiate, and cellular metabolism must match these demands. Proliferating cells, namely cancer cells and stem cells, tend to prefer glycolysis rather than a more oxidative metabolism. This preference has been exploited for the improvement of new biotechnological and therapeutic applications. In this review, we describe mitochondrial dynamics and energy metabolism modulation during nuclear reprogramming of somatic cells, which will be essential for the development and optimization of new protocols for regenerative medicine, disease modeling and toxicological screens involving patient-specific reprogrammed cells.


Assuntos
Reprogramação Celular , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Proliferação de Células , Humanos
16.
Hum Reprod Update ; 20(6): 924-43, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25013216

RESUMO

BACKGROUND: Both pluripotent stem cells (PSCs) and cancer cells have been described as having similar metabolic pathways, most notably a penchant for favoring glycolysis even under aerobiosis, suggesting common themes that might be explored for both stem cell differentiation and anti-oncogenic purposes. METHODS: A search of the scientific literature available in the PubMed/Medline was conducted for studies on metabolism and mitochondrial function related to gametogenesis, early development, stem cells and cancers in the reproductive system, notably breast, prostate, ovarian and testicular cancers. RESULTS: Both PSCs and some types of cancer cells, particularly reproductive cancers, were found to obtain energy mostly by glycolysis, often reducing mitochondrial activity and oxidative phosphorylation. This strategy links proliferating cells, allowing for the biosynthesis reactions necessary for cell division. Interventions that affect metabolic pathways, and force cells to change their preferences, can lead to shifts in cell status, increasing either pluripotency or differentiation of stem cells, and causing cancer cells to become more or less aggressive. Interestingly metabolic changes in many cases seemed to lead to cell transformation, not necessarily follow it, suggesting a direct role of metabolic choices in influencing the (epi)genetic program of different cell types. CONCLUSIONS: There are uncanny similarities between PSCs and cancer cells at the metabolic level. Furthermore, metabolism may also play a direct role in cell status and targeting metabolic pathways could therefore be a promising strategy for both the control of cancer cell proliferation and the regulation of stem cell physiology, in terms of manipulating stem cells toward relevant phenotypes that may be important for tissue engineering, or making cancer cells become less tumorigenic.


Assuntos
Desenvolvimento Embrionário/fisiologia , Gametogênese/fisiologia , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular/fisiologia , Transformação Celular Neoplásica , Metabolismo Energético/fisiologia , Glicólise/fisiologia , Humanos , Redes e Vias Metabólicas , Mitocôndrias/fisiologia , Neoplasias , Fosforilação Oxidativa , Células-Tronco Pluripotentes/citologia , Espermatogênese/fisiologia
17.
Syst Biol Reprod Med ; 60(2): 72-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24350988

RESUMO

Literature regarding the effects of sildenafil citrate on sperm function remains controversial. In the present study, we specifically wanted to determine if mitochondrial dysfunction, namely membrane potential, reactive oxygen species production, and changes in energy content, are involved in in vitro sildenafil-induced alterations of human sperm function. Sperm samples of healthy men were incubated in the presence of 0.03, 0.3, and 3 µM sildenafil citrate in a phosphate buffered saline (PBS)-based medium for 2, 3, 12, and 24 hours. Sperm motility and viability were evaluated and mitochondrial function, i.e., mitochondrial membrane potential and mitochondrial superoxide production were assessed using flow-cytometry. Additionally, adenosine triphosphate (ATP) levels were determined by high performance liquid chromatography (HPLC) analysis. Results show a decrease in sperm motility correlated with the level of mitochondria-generated superoxide, without a visible effect on mitochondrial membrane potential or viability upon exposure to sildenafil. The effect on both motility and superoxide production was higher for the intermediate concentration of sildenafil (0.3 µM) indicating that the in vitro effects of sildenafil on human sperm do not vary linearly with drug concentration. Adenosine triphosphate levels also decreased following sildenafil exposure, but this decrease was only detected after a decrease in motility was already evident. These results suggest that along with the level of ATP and mitochondrial function other factors are involved in the early sildenafil-mediated decline in sperm motility. However, the further decrease in ATP levels and increase in mitochondria-generated reactive oxygen species after 24 hours of exposure might further contribute towards declining sperm motility.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Inibidores da Fosfodiesterase 5/farmacologia , Piperazinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Espermatozoides/efeitos dos fármacos , Sulfonas/farmacologia , Humanos , Masculino , Purinas/farmacologia , Citrato de Sildenafila , Espermatozoides/metabolismo , Superóxidos/metabolismo
18.
PLoS One ; 8(12): e82095, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312632

RESUMO

The mitochondrion is emerging as a key organelle in stem cell biology, acting as a regulator of stem cell pluripotency and differentiation. In this study we sought to understand the effect of mitochondrial complex III inhibition during neuronal differentiation of mouse embryonic stem cells. When exposed to antimycin A, a specific complex III inhibitor, embryonic stem cells failed to differentiate into dopaminergic neurons, maintaining high Oct4 levels even when subjected to a specific differentiation protocol. Mitochondrial inhibition affected distinct populations of cells present in culture, inducing cell loss in differentiated cells, but not inducing apoptosis in mouse embryonic stem cells. A reduction in overall proliferation rate was observed, corresponding to a slight arrest in S phase. Moreover, antimycin A treatment induced a consistent increase in HIF-1α protein levels. The present work demonstrates that mitochondrial metabolism is critical for neuronal differentiation and emphasizes that modulation of mitochondrial functions through pharmacological approaches can be useful in the context of controlling stem cell maintenance/differentiation.


Assuntos
Antimicina A/farmacologia , Diferenciação Celular/efeitos dos fármacos , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Células-Tronco Embrionárias/citologia , Inibidores Enzimáticos/farmacologia , Neurônios/citologia , Células-Tronco Pluripotentes/citologia , Nucleotídeos de Adenina/metabolismo , Animais , Linhagem Celular , Células-Tronco Embrionárias/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
19.
Hum Reprod ; 28(12): 3167-77, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24067601

RESUMO

STUDY QUESTION: Is the environmental endocrine disruptor p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) able to induce non-genomic changes in human sperm and consequently affect functional sperm parameters? SUMMARY ANSWER: p,p'-DDE promoted Ca(2+) flux into human sperm by activating CatSper channels even at doses found in human reproductive fluids, ultimately compromising sperm parameters important for fertilization. WHAT IS KNOWN ALREADY: p,p'-DDE may promote non-genomic actions and interact directly with pre-existing signaling pathways, as already observed in other cell types. However, although often found in both male and female reproductive fluids, its effects on human spermatozoa function are not known. STUDY DESIGN, SIZE, DURATION: Normozoospermic sperm samples from healthy individuals were included in this study. Samples were exposed to several p,p'-DDE concentrations for 3 days at 37°C and 5% CO2 in vitro to mimic the putative continuous exposure to this toxicant in the female reproductive tract in vivo. Shorter p,p'-DDE incubation periods were also performed in order to monitor sperm rapid Ca(2+) responses. All experiments were repeated on a minimum of five sperm samples from different individuals. PARTICIPANTS/MATERIALS, SETTING, METHODS: All healthy individuals were recruited at the Biosciences School, University of Birmingham, the Medical Research Institute, University of Dundee and in the Human Reproduction Service at University Hospitals of Coimbra. Intracellular Ca(2+) concentration ([Ca(2+)]i) was monitored by imaging single spermatozoa loaded with Oregon Green BAPTA-1AM and further whole-cell patch-clamp recordings were performed to validate our results. Sperm viability and acrosomal integrity were assessed using the LIVE/DEAD sperm vitality kit and the acrosomal content marker PSA-FITC, respectively. MAIN RESULTS AND THE ROLE OF CHANCE: p,p'-DDE rapidly increased [Ca(2+)]i (P < 0.05) even at extremely low doses (1 pM and 1 nM), with magnitudes of response up to 200%, without affecting sperm viability, except after 3 days of continuous exposure to the highest concentration tested (P < 0.05). Furthermore, experiments performed in a low Ca(2+) medium demonstrated that extracellular Ca(2+) influx was responsible for this Ca(2+) increase (P < 0.01). Mibefradil and NNC 55-0396, both inhibitors of the sperm-specific CatSper channel, reversed the p,p'-DDE-induced [Ca(2+)]i rise, suggesting the participation of CatSper in this process (P < 0.05). In fact, whole-cell patch-clamp recordings confirmed CatSper as a target of p,p'-DDE action by monitoring an increase in CatSper currents of >100% (P < 0.01). Finally, acrosomal integrity was adversely affected after 2 days of exposure to p,p'-DDE concentrations, suggesting that [Ca(2+)]i rise may cause premature acrosome reaction (P < 0.05). LIMITATIONS, REASONS FOR CAUTION: This is an in vitro study, and caution must be taken when extrapolating the results. WIDER IMPLICATIONS OF THE FINDINGS: A novel non-genomic p,p'-DDE mechanism specific to sperm is shown in this study. p,p'-DDE was able to induce [Ca(2+)]i rise in human sperm through the opening of CatSper consequently compromising male fertility. The promiscuous nature of CatSper activation may predispose human sperm to the action of some persistent endocrine disruptors. STUDY FUNDING/COMPETING INTEREST(S): The study was supported by both the Portuguese National Science Foundation (FCT; PEst-C/SAU/LA0001/2011) and the UK Wellcome Trust (Grant #86470). SM was supported by the Infertility Research Trust. RST is a recipient of a PhD fellowship from FCT (SFRH/BD/46002/2008). None of the authors has any conflict of interest to declare.


Assuntos
Canais de Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Diclorodifenil Dicloroetileno/toxicidade , Disruptores Endócrinos/toxicidade , Espermatozoides/efeitos dos fármacos , Benzimidazóis/farmacologia , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclopropanos , Humanos , Técnicas In Vitro , Masculino , Mibefradil/farmacologia , Naftalenos , Espermatozoides/fisiologia
20.
Environ Pollut ; 180: 281-90, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23796802

RESUMO

The environmental dioxin 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is classified as a Group 1 human carcinogen and teratogenic agent. We hypothesize that TCDD-induced oxidative stress may also interfere with mitochondrial ATP-sensitive potassium channels (mitoKATP), which are known to regulate and to be regulated by mitochondrial redox state. We investigated the effects of an acute treatment of male Wistar rats with TCDD (50 µg/kg i.p.) and measured the regulation of cardiac mitoKATP. While the function of cardiac mitochondria was slightly depressed, mitoKATP activity was 52% higher in animals treated with TCDD. The same effects were not observed in liver mitochondria isolated from the same animals. Our data also shows that regulation of mitochondrial ROS production by mitoKATP activity is different in both groups. To our knowledge, this is the first report to show that TCDD increases mitoKATP activity in the heart, which may counteract the increased oxidative stress caused by the dioxin during acute exposure.


Assuntos
Carcinógenos/toxicidade , Dioxinas/toxicidade , Canais KATP/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Canais de Potássio/metabolismo , Animais , Masculino , Mitocôndrias Hepáticas/metabolismo , Estresse Oxidativo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA