Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 14(650): eabo4474, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35731891

RESUMO

Prediction of hepatocellular carcinoma (HCC) risk is an urgent unmet need in patients with nonalcoholic fatty liver disease (NAFLD). In cohorts of 409 patients with NAFLD from multiple global regions, we defined and validated hepatic transcriptome and serum secretome signatures predictive of long-term HCC risk in patients with NAFLD. A 133-gene signature, prognostic liver signature (PLS)-NAFLD, predicted incident HCC over up to 15 years of longitudinal observation. High-risk PLS-NAFLD was associated with IDO1+ dendritic cells and dysfunctional CD8+ T cells in fibrotic portal tracts along with impaired metabolic regulators. PLS-NAFLD was validated in independent cohorts of patients with NAFLD who were HCC naïve (HCC incidence rates at 15 years were 22.7 and 0% in high- and low-risk patients, respectively) or HCC experienced (de novo HCC recurrence rates at 5 years were 71.8 and 42.9% in high- and low-risk patients, respectively). PLS-NAFLD was bioinformatically translated into a four-protein secretome signature, PLSec-NAFLD, which was validated in an independent cohort of HCC-naïve patients with NAFLD and cirrhosis (HCC incidence rates at 15 years were 37.6 and 0% in high- and low-risk patients, respectively). Combination of PLSec-NAFLD with our previously defined etiology-agnostic PLSec-AFP yielded improved HCC risk stratification. PLS-NAFLD was modified by bariatric surgery, lipophilic statin, and IDO1 inhibitor, suggesting that the signature can be used for drug discovery and as a surrogate end point in HCC chemoprevention clinical trials. Collectively, PLS/PLSec-NAFLD may enable NAFLD-specific HCC risk prediction and facilitate clinical translation of NAFLD-directed HCC chemoprevention.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Linfócitos T CD8-Positivos , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Humanos , Cirrose Hepática/complicações , Cirrose Hepática/patologia , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Fatores de Risco
2.
Clin Gastroenterol Hepatol ; 20(3): 651-657, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33667676

RESUMO

BACKGROUND & AIMS: Severe alcoholic hepatitis (AH) is a highly lethal condition and it is still a challenge to predict the outcome. We previously identified and validated a composite score of hepatic 123-gene prognostic signature and the model for end-stage liver disease (MELD) score: gene signature-MELD. However, the need for liver biopsy limits its clinical application. Therefore, we aimed to identify a plasma protein-based surrogate of the gene signature and independently validate its prognostic capability. METHODS: All patients were diagnosed with severe AH at Cliniques universitaires de Bruxelles Hôpital Erasme (Brussels, Belgium), and the plasma samples were collected at admission before any treatment. The primary outcome was death or liver transplantation within 90 days. Using our computational pipeline, named translation of tissue expression to secretome (TexSEC), a hepatic-transcriptome-based prognostic signature was converted to a plasma-based secretome signature, which was optimized in 50 patients by comparing their hepatic molecular dysregulation status and combining it with the MELD score. The composite score was validated independently in 57 patients. RESULTS: The TexSEC and optimization process identified a 6-plasma-protein panel as a surrogate for the 123-gene signature. A composite score with the MELD score, the plasma-signature (ps)-MELD score, was created by using the coefficients of the gene signature-MELD equation. In the validation cohort, the high-risk ps-MELD (n = 23; 40%) was associated significantly with death or liver transplantation within 90 days (adjusted hazard ratio, 4.57; 95% CI, 2.15-9.30; P < .001). The ps-MELD score showed a stable, high prognostic association (time-dependent area under receiver operating characteristics curve, >0.80) and was well calibrated over time; it consistently outperformed existing clinical scores as indicated by various model performance indices. CONCLUSIONS: The high-risk ps-MELD score was associated with short-term survival in patients with severe AH.


Assuntos
Doença Hepática Terminal , Hepatite Alcoólica , Hepatite Alcoólica/tratamento farmacológico , Humanos , Testes de Função Hepática , Prognóstico , Curva ROC , Estudos Retrospectivos , Índice de Gravidade de Doença
3.
Med ; 2(7): 836-850.e10, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34318286

RESUMO

BACKGROUND: Accurate non-invasive prediction of long-term hepatocellular carcinoma (HCC) risk in advanced liver fibrosis is urgently needed for cost-effective HCC screening; however, this currently remains an unmet need. METHODS: A serum-protein-based prognostic liver secretome signature (PLSec) was bioinformatically derived from previously validated hepatic transcriptome signatures and optimized in 79 patients with advanced liver fibrosis. We independently validated PLSec for HCC risk in 331 cirrhosis patients with mixed etiologies (validation set 1 [V1]) and thereafter developed a score with clinical prognostic variables. The score was then validated in two independent cohorts: validation set 2 (V2): 164 patients with advanced liver fibrosis due to hepatitis C virus (HCV) infection cured after direct-acting antiviral therapy; validation set 3 (V3): 146 patients with advanced liver fibrosis with successfully-treated HCC and cured HCV infection. FINDINGS: An 8-protein blood-based PLSec recapitulated transcriptome-based hepatic HCC risk status. In V1, PLSec was significantly associated with incident HCC risk (adjusted hazard ratio [aHR], 2.35; 95% confidence interval [CI], 1.30-4.23). A composite score with serum alpha-fetoprotein (PLSec-AFP) was defined in V1, and validated in V2 (adjusted odds ratio, 3.80 [95%CI, 1.66-8.66]) and V3 (aHR, 3.08 [95%CI, 1.78-5.31]; c-index, 0.74). PLSec-AFP outperformed AFP alone (Brier score, 0.165 vs. 0.186 in V2; 0.196 vs. 0.206 in V3, respectively). CONCLUSIONS: The blood-based PLSec-AFP can accurately stratify patients with advanced liver fibrosis for long-term HCC risk and thereby guide risk-based tailored HCC screening.


Assuntos
Carcinoma Hepatocelular , Hepatite C Crônica , Hepatite C , Neoplasias Hepáticas , Antivirais/uso terapêutico , Carcinoma Hepatocelular/diagnóstico , Hepacivirus/metabolismo , Hepatite C/complicações , Hepatite C Crônica/complicações , Humanos , Cirrose Hepática/complicações , Neoplasias Hepáticas/diagnóstico , Prognóstico , Secretoma , alfa-Fetoproteínas/metabolismo
4.
Leuk Lymphoma ; 62(10): 2310-2319, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33949918

RESUMO

Polycythemia vera is a Philadelphia negative myeloproliferative neoplasm characterized by erythrocytosis in which the major cause of morbidity and mortality is thrombosis. Aspirin and hematocrit reduction by venesection or cytoreductive therapy are at the cornerstone of management. First line cytoreductive therapy in high-risk patients is hydroxyurea; however, its use is associated with toxicities and resistance in a significant proportion of patients. In a disease with a long overall survival with appropriate treatment, it is imperative that other treatment options do not accelerate the risk of progression to acute leukemia. The following review will appraise the evidence of interferon, ruxolitinib, and other agents in management of hydroxyurea resistant or intolerant polycythemia vera.


Assuntos
Leucemia Mieloide Aguda , Policitemia Vera , Trombose , Humanos , Hidroxiureia/uso terapêutico , Flebotomia , Policitemia Vera/diagnóstico , Policitemia Vera/tratamento farmacológico
5.
Nat Immunol ; 21(8): 950-961, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32572241

RESUMO

A contribution of epigenetic modifications to B cell tolerance has been proposed but not directly tested. Here we report that deficiency of ten-eleven translocation (Tet) DNA demethylase family members Tet2 and Tet3 in B cells led to hyperactivation of B and T cells, autoantibody production and lupus-like disease in mice. Mechanistically, in the absence of Tet2 and Tet3, downregulation of CD86, which normally occurs following chronic exposure of self-reactive B cells to self-antigen, did not take place. The importance of dysregulated CD86 expression in Tet2- and Tet3-deficient B cells was further demonstrated by the restriction, albeit not complete, on aberrant T and B cell activation following anti-CD86 blockade. Tet2- and Tet3-deficient B cells had decreased accumulation of histone deacetylase 1 (HDAC1) and HDAC2 at the Cd86 locus. Thus, our findings suggest that Tet2- and Tet3-mediated chromatin modification participates in repression of CD86 on chronically stimulated self-reactive B cells, which contributes, at least in part, to preventing autoimmunity.


Assuntos
Autoimunidade/imunologia , Linfócitos B/imunologia , Antígeno B7-2/imunologia , Proteínas de Ligação a DNA/imunologia , Dioxigenases/imunologia , Proteínas Proto-Oncogênicas/imunologia , Animais , Doenças Autoimunes/imunologia , Epigênese Genética/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
6.
J Allergy Clin Immunol ; 145(2): 679-697.e5, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31513879

RESUMO

BACKGROUND: Patients with T-cell immunodeficiencies are generally treated with allogeneic hematopoietic stem cell transplantation, but alternatives are needed for patients without matched donors. An innovative intrathymic gene therapy approach that directly targets the thymus might improve outcomes. OBJECTIVE: We sought to determine the efficacy of intrathymic adeno-associated virus (AAV) serotypes to transduce thymocyte subsets and correct the T-cell immunodeficiency in a zeta-associated protein of 70 kDa (ZAP-70)-deficient murine model. METHODS: AAV serotypes were injected intrathymically into wild-type mice, and gene transfer efficiency was monitored. ZAP-70-/- mice were intrathymically injected with an AAV8 vector harboring the ZAP70 gene. Thymus structure, immunophenotyping, T-cell receptor clonotypes, T-cell function, immune responses to transgenes and autoantibodies, vector copy number, and integration were evaluated. RESULTS: AAV8, AAV9, and AAV10 serotypes all transduced thymocyte subsets after in situ gene transfer, with transduction of up to 5% of cells. Intrathymic injection of an AAV8-ZAP-70 vector into ZAP-70-/- mice resulted in a rapid thymocyte differentiation associated with the development of a thymic medulla. Strikingly, medullary thymic epithelial cells expressing the autoimmune regulator were detected within 10 days of gene transfer, correlating with the presence of functional effector and regulatory T-cell subsets with diverse T-cell receptor clonotypes in the periphery. Although thymocyte reconstitution was transient, gene-corrected peripheral T cells harboring approximately 1 AAV genome per cell persisted for more than 40 weeks, and AAV vector integration was detected. CONCLUSIONS: Intrathymic AAV-transduced progenitors promote a rapid restoration of the thymic architecture, with a single wave of thymopoiesis generating long-term peripheral T-cell function.


Assuntos
Terapia Genética/métodos , Timócitos , Transdução Genética/métodos , Proteína-Tirosina Quinase ZAP-70 , Animais , Dependovirus , Vetores Genéticos , Síndromes de Imunodeficiência/terapia , Camundongos , Camundongos Knockout , Proteína-Tirosina Quinase ZAP-70/administração & dosagem , Proteína-Tirosina Quinase ZAP-70/genética
7.
Sci Adv ; 5(7): eaaw0315, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31328160

RESUMO

B cell activation is regulated by the stimulatory or inhibitory co-receptors of B cell receptors (BCRs). Here, we investigated the signaling mechanism of Fc receptor-like 1 (FcRL1), a newly identified BCR co-receptor. FcRL1 was passively recruited into B cell immunological synapses upon BCR engagement in the absence of FcRL1 cross-linking, suggesting that FcRL1 may intrinsically regulate B cell activation and function. BCR cross-linking alone led to the phosphorylation of the intracellular Y281ENV motif of FcRL1 to provide a docking site for c-Abl, an SH2 domain-containing kinase. The FcRL1 and c-Abl signaling module, in turn, potently augmented B cell activation and proliferation. FcRL1-deficient mice exhibited markedly impaired formation of extrafollicular plasmablasts and germinal centers, along with decreased antibody production upon antigen stimulation. These findings reveal a critical BCR signal-enhancing function of FcRL1 through its intrinsic recruitment to B cell immunological synapses and subsequent recruitment of c-Abl upon BCR cross-linking.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Animais , Formação de Anticorpos/genética , Formação de Anticorpos/imunologia , Deleção de Genes , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores de Antígenos de Linfócitos B/química , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Domínios de Homologia de src
8.
Nat Immunol ; 19(9): 986-1000, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30127432

RESUMO

Gain-of-function mutations in the gene encoding the phosphatidylinositol-3-OH kinase catalytic subunit p110δ (PI3Kδ) result in a human primary immunodeficiency characterized by lymphoproliferation, respiratory infections and inefficient responses to vaccines. However, what promotes these immunological disturbances at the cellular and molecular level remains unknown. We generated a mouse model that recapitulated major features of this disease and used this model and patient samples to probe how hyperactive PI3Kδ fosters aberrant humoral immunity. We found that mutant PI3Kδ led to co-stimulatory receptor ICOS-independent increases in the abundance of follicular helper T cells (TFH cells) and germinal-center (GC) B cells, disorganized GCs and poor class-switched antigen-specific responses to immunization, associated with altered regulation of the transcription factor FOXO1 and pro-apoptotic and anti-apoptotic members of the BCL-2 family. Notably, aberrant responses were accompanied by increased reactivity to gut bacteria and a broad increase in autoantibodies that were dependent on stimulation by commensal microbes. Our findings suggest that proper regulation of PI3Kδ is critical for ensuring optimal host-protective humoral immunity despite tonic stimulation from the commensal microbiome.


Assuntos
Linfócitos B/fisiologia , Microbioma Gastrointestinal/imunologia , Centro Germinativo/fisiologia , Mutação/genética , Fosfatidilinositol 3-Quinases/genética , Linfócitos T Auxiliares-Indutores/fisiologia , Animais , Autoanticorpos/sangue , Células Cultivadas , Classe I de Fosfatidilinositol 3-Quinases/genética , Modelos Animais de Doenças , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Imunidade Humoral/genética , Switching de Imunoglobulina/genética , Síndromes de Imunodeficiência/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
9.
Stem Cell Res Ther ; 5(1): 19, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24480247

RESUMO

INTRODUCTION: Oxidative stress is implicated in tissue inflammation, and plays an important role in the pathogenesis of immune-mediated nephritis. Using the anti-glomerular basement membrane antibody-induced glomerulonephritis (anti-GBM-GN) mouse model, we found that increased expression of glutathione S-transferase Mu 2 (GSTM2) was related to reduced renal damage caused by anti-GBM antibodies. Furthermore, mesenchymal stem cell (MSC)-based therapy has shed light on the treatment of immune-mediated kidney diseases. The aim of this study was to investigate if MSCs could be utilized as vehicles to deliver the GSTM2 gene product into the kidney and to evaluate its potential therapeutic effect on anti-GBM-GN. METHODS: The human GSTM2 gene (hGSTM2) was transduced into mouse bone marrow-derived MSCs via a lentivirus vector to create a stable cell line (hGSTM2-MSC). The cultured hGSTM2-MSCs were treated with 0.5 mM H2O2, and apoptotic cells were measured by terminal dUTP nick-end labeling (TUNEL) assay. The 129/svj mice, which were challenged with anti-GBM antibodies, were injected with 106 hGSTM2-MSCs via the tail vein. Expression of hGSTM2 and inflammatory cytokines in the kidney was assayed by quantitative PCR and western blotting. Renal function of mice was evaluated by monitoring proteinuria and levels of blood urea nitrogen (BUN), and renal pathological changes were analyzed by histochemistry. Immunohistochemical analysis was performed to measure inflammatory cell infiltration and renal cell apoptosis. RESULTS: MSCs transduced with hGSTM2 exhibited similar growth and differentiation properties to MSCs. hGSTM2-MSCs persistently expressed hGSTM2 and resisted H2O2-induced apoptosis. Upon injection into 129/svj mice, hGSTM2-MSCs migrated to the kidney and expressed hGSTM2. The anti-GBM-GN mice treated with hGSTM2-MSCs exhibited reduced proteinuria and BUN (58% and 59% reduction, respectively) and ameliorated renal pathological damage, compared with control mice. Mice injected with hGSTM2-MSCs showed alleviated renal inflammatory cell infiltration and reduced expression of chemokine (C-C motif) ligand 2 (CCL2), interleukin (IL)-1ß and IL-6 (53%, 46% and 52% reduction, respectively), compared with controls. Moreover, hGSTM2-MSCs increased expression of renal superoxide dismutase and catalase, which may associate with detoxifying reactive oxygen species to prevent oxidative renal damage. CONCLUSIONS: Our data suggest that the enhanced protective effect of GSTM2-transduced MSCs against anti-GBM-GN might be associated with inhibition of oxidative stress-induced renal cell apoptosis and inflammation, through over-expression of hGSTM2 in mouse kidneys.


Assuntos
Terapia Genética , Glomerulonefrite Membranosa/genética , Glutationa Transferase/genética , Células-Tronco Mesenquimais/metabolismo , Estresse Oxidativo , Animais , Autoanticorpos/imunologia , Membrana Basal Glomerular/imunologia , Membrana Basal Glomerular/metabolismo , Glomerulonefrite Membranosa/imunologia , Glomerulonefrite Membranosa/metabolismo , Glutationa Transferase/imunologia , Glutationa Transferase/metabolismo , Transplante de Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA
10.
J Stem Cell Res Ther ; 4(9)2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25995969

RESUMO

OBJECTIVE: To elucidate the role of oxidation resistance 1 (OXR1) gene. Oxidative stress plays a pivotal role in pathogenesis of immune-mediated nephritis. Recently we identified oxidation resistance 1 (OXR1) is conventionally expressed in eukaryotes and has an ability to prevent oxidative damage caused by various oxidative stresses. However the protective effect of OXR1 in immune-associated inflammatory response and oxidative damage is not clear and will be investigated in this study. METHODS: We utilized mesenchymal stem cells (MSCs) as vehicles to carry OXR1 into the injured kidneys of nephritis model mice and investigated the influence of OXR1 on glomerulonephritis. Human OXR1 gene was integrated into genome of MSCs via lentiviral vector, and established hOXR1-MSC cell line which still maintains the differentiation property. 129/svj mice with anti-glomerular basement membrane (GBM) challenge and spontaneous lupus mice B6.Sle1.Sle2.Sle3 were injected with hOXR1-MSCs (i.v. injection) to evaluate the function of hOXR1. Immunohistochemistry was used to appraise the renal pathology and Tunel staining was applied to detect cell apoptosis. RESULTS: Compared with control mice, hOXR1-MSCs administration showed significantly decreased blood urea nitrogen (BUN), proteinuria and ameliorated renal pathological damage. hOXR1-MSCs transplantation significantly reduced macrophage and T lymphocyte infiltration by inhibiting the expression of CCL2, CCL7, IL-1ß, IL-6 and NFκB in mouse kidney. Moreover, hOXR1-MSCs prevented hydrogen peroxide (H2O2)-induced oxidative stress and its implantation reduced nitric oxide (NO) in mouse serum and urine to inhibit tubular cell apoptosis. CONCLUSION: OXR1-MSCs transplantation may exert a certain protective effect on nephritis by suppressing inflammation and oxidative stress.

11.
PLoS One ; 8(7): e67790, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935844

RESUMO

Previously we have shown that kallikreins (klks) play a renoprotective role in nephrotoxic serum induced nephritis. In this study, we have used mesenchymal stem cells (MSCs) as vehicles to deliver klks into the injured kidneys and have measured their therapeutic effect on experimental antibody induced nephritis and lupus nephritis. Human KLK-1 (hKLK1) gene was transduced into murine MSCs using a retroviral vector to generate a stable cell line, hKLK1-MSC, expressing high levels of hKLK1. 129/svj mice subjected to anti-GBM induced nephritis were transplanted with 10(6) hKLK1-MSCs and hKLK1 expression was confirmed in the kidneys. Compared with vector-MSCs injected mice, the hKLK1-MSCs treated mice showed significantly reduced proteinuria, blood urea nitrogen (BUN) and ameliorated renal pathology. Using the same strategy, we treated lupus-prone B6.Sle1.Sle3 bicongenic mice with hKLK1-MSCs and demonstrated that hKLK1-MSCs delivery also attenuated lupus nephritis. Mechanistically, hKLK1-MSCs reduced macrophage and T-lymphocyte infiltration into the kidney by suppressing the expression of inflammation cytokines. Moreover, hKLK1 transduced MSCs were more resistant to oxidative stress-induced apoptosis. These findings advance genetically modified MSCs as potential gene delivery tools for targeting therapeutic agents to the kidneys in order to modulate inflammation and oxidative stress in lupus nephritis.


Assuntos
Doença Antimembrana Basal Glomerular/terapia , Inflamação/patologia , Calicreínas/metabolismo , Nefrite Lúpica/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Estresse Oxidativo , Animais , Doença Antimembrana Basal Glomerular/sangue , Doença Antimembrana Basal Glomerular/patologia , Doença Antimembrana Basal Glomerular/prevenção & controle , Apoptose/efeitos dos fármacos , Linhagem Celular , Quimiocinas/sangue , Quimiocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Inflamação/sangue , Rim/metabolismo , Rim/patologia , Nefrite Lúpica/sangue , Nefrite Lúpica/patologia , Nefrite Lúpica/prevenção & controle , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/patologia , Transdução Genética
12.
Arthritis Rheum ; 65(3): 780-91, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23280471

RESUMO

OBJECTIVE: To ascertain whether engineered expression of kallikreins within the kidneys, using an inducible Cre/loxP system, can ameliorate murine lupus nephritis. METHODS: In mice with a lupus-prone genetic background, we engineered the expression of tamoxifen-inducible Cre recombinase under the control of a kidney-specific promoter whose activation initiates murine kallikrein-1 expression within the kidneys. These transgenic mice were injected with either tamoxifen or vehicle at age 2 months and then were monitored for 8 months for kallikrein expression and disease. RESULTS: Elevated expression of kallikrein was detected in the kidney and urine of tamoxifen-injected mice but not in controls. At age 10 months, all vehicle-injected mice developed severe lupus nephritis, as evidenced by increased proteinuria (mean ± SD 13.43 ± 5.65 mg/24 hours), increased blood urea nitrogen (BUN) and serum creatinine levels (39.86 ± 13.45 mg/dl and 15.23 ± 6.89 mg/dl, respectively), and severe renal pathology. In contrast, the tamoxifen-injected mice showed significantly reduced proteinuria (6.6 ± 4.12 mg/24 hours), decreased BUN and serum creatinine levels (15.71 ± 8.17 mg/dl and 6.64 ± 3.39 mg/dl, respectively), and milder renal pathology. Tamoxifen-induced up-regulation of renal kallikrein expression increased nitric oxide production and dampened renal superoxide production and inflammatory cell infiltration, alluding to some of the pathways through which kallikreins may be operating within the kidneys. CONCLUSION: Local expression of kallikreins within the kidney has the capacity to dampen lupus nephritis, possibly by modulating inflammation and oxidative stress.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Túbulos Renais/fisiologia , Nefrite Lúpica/genética , Estresse Oxidativo/fisiologia , Calicreínas Teciduais/genética , Animais , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Integrases/genética , Túbulos Renais/citologia , Óperon Lac/genética , Nefrite Lúpica/metabolismo , Nefrite Lúpica/fisiopatologia , Masculino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos , Camundongos Transgênicos , Óxido Nítrico/metabolismo , Moduladores Seletivos de Receptor Estrogênico/toxicidade , Superóxidos/metabolismo , Tamoxifeno/toxicidade , Calicreínas Teciduais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA