Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 180: 108962, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39142222

RESUMO

Today, doctors rely heavily on medical imaging to identify abnormalities. Proper classification of these abnormalities enables them to take informed actions, leading to early diagnosis and treatment. This paper introduces the "EfficientKNN" model, a novel hybrid deep learning approach that combines the advanced feature extraction capabilities of EfficientNetB3 with the simplicity and effectiveness of the k-Nearest Neighbors (k-NN) algorithm. Initially, EfficientNetB3, pre-trained on ImageNet, is repurposed to serve as a feature extractor. Subsequently, a GlobalAveragePooling2D layer is applied, followed by an optional Principal Component Analysis (PCA) to reduce dimensionality while preserving critical information. PCA is used selectively when deemed necessary. The extracted features are then classified using an optimized k-NN algorithm, fine-tuned through meticulous cross-validation.Our model underwent rigorous training using a curated dataset containing benign, malignant, and normal medical images. Data augmentation techniques, including rotations, shifts, flips, and zooms, were employed to help the model generalize and efficiently handle new, unseen data. To enhance the model's ability to identify the important features necessary for accurate predictions, the dataset was refined using segmentation and overlay techniques. The training utilized an ensemble of optimization algorithms-SGD, Adam, and RMSprop-with hyperparameters set at a learning rate of 0.00045, a batch size of 32, and up to 120 epochs, facilitated by early stopping to prevent overfitting.The results demonstrate that the EfficientKNN model outperforms traditional models such as VGG16, AlexNet, and VGG19 in terms of accuracy, precision, and F1-score. Additionally, the model showed better results compared to EfficientNetB3 alone. Achieving a 100 % accuracy rate on multiple tests, the EfficientKNN model has significant potential for real-world diagnostic applications. This study highlights the model's scalability, efficient use of cloud storage, and real-time prediction capabilities, all while minimizing computational demands.By integrating the strengths of EfficientNetB3's deep learning architecture with the interpretability of k-NN, EfficientKNN presents a significant advancement in medical image classification, promising improved diagnostic accuracy and clinical applicability.


Assuntos
Aprendizado Profundo , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Ultrassonografia Mamária/métodos , Algoritmos , Mama/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Análise de Componente Principal
2.
Skin Res Technol ; 30(6): e13770, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38881051

RESUMO

BACKGROUND: Melanoma is one of the most malignant forms of skin cancer, with a high mortality rate in the advanced stages. Therefore, early and accurate detection of melanoma plays an important role in improving patients' prognosis. Biopsy is the traditional method for melanoma diagnosis, but this method lacks reliability. Therefore, it is important to apply new methods to diagnose melanoma effectively. AIM: This study presents a new approach to classify melanoma using deep neural networks (DNNs) with combined multiple modal imaging and genomic data, which could potentially provide more reliable diagnosis than current medical methods for melanoma. METHOD: We built a dataset of dermoscopic images, histopathological slides and genomic profiles. We developed a custom framework composed of two widely established types of neural networks for analysing image data Convolutional Neural Networks (CNNs) and networks that can learn graph structure for analysing genomic data-Graph Neural Networks. We trained and evaluated the proposed framework on this dataset. RESULTS: The developed multi-modal DNN achieved higher accuracy than traditional medical approaches. The mean accuracy of the proposed model was 92.5% with an area under the receiver operating characteristic curve of 0.96, suggesting that the multi-modal DNN approach can detect critical morphologic and molecular features of melanoma beyond the limitations of traditional AI and traditional machine learning approaches. The combination of cutting-edge AI may allow access to a broader range of diagnostic data, which can allow dermatologists to make more accurate decisions and refine treatment strategies. However, the application of the framework will have to be validated at a larger scale and more clinical trials need to be conducted to establish whether this novel diagnostic approach will be more effective and feasible.


Assuntos
Aprendizado Profundo , Dermoscopia , Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/diagnóstico por imagem , Melanoma/diagnóstico , Melanoma/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia , Dermoscopia/métodos , Redes Neurais de Computação , Reprodutibilidade dos Testes , Genômica/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Idoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA