Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Medicina (Kaunas) ; 59(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36984454

RESUMO

Current primary intracerebral hemorrhage (ICH) treatments focus on limiting hematoma volume by lowering blood pressure, reversing anticoagulation, or hematoma evacuation. Nevertheless, there is no effective strategy to protect the brain from secondary injury due to ICH. Excess heme and iron as by-products of lysing clots in ICH might contribute to this secondary injury by triggering perihematomal edema. We present a clinical situation of an ICH case where iron-chelating therapy might be beneficial, as supported by scientific evidence. We looked through four databases (Pubmed, Cochrane, Embase, and Google Scholar) to find studies assessing the efficacy of iron-chelating therapy in ICH patients. Validity, importance, and applicability (VIA) of the included articles were appraised using worksheets from the Oxford Centre for Evidence-Based Medicine. Two out of five eligible studies were valid, important, and applicable to our patient. Both studies showed the positive effects of iron-chelating therapy on neurological outcome, as measured by National Institutes of Health Stroke Scale (NIHSS) score and modified Rankin Score (mRS). The beneficial effects of deferoxamine were demonstrated within the moderate volume (10-30 mL) subgroup, with a positive relative risk reduction (RRR) and low number needed to treat (six persons). Based on our appraisal, we considered iron-chelating therapy as an additional therapy for ICH patients, given its benefits and adverse effects. More specific studies using a larger sample size, focusing on moderate-volume ICH, and using standardized neurological outcomes are encouraged.


Assuntos
Hemorragia Cerebral , Quelantes de Ferro , Estados Unidos , Humanos , Quelantes de Ferro/uso terapêutico , Hemorragia Cerebral/complicações , Hemorragia Cerebral/tratamento farmacológico , Encéfalo , Ferro/uso terapêutico , Hematoma
2.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36297359

RESUMO

Epilepsy is a disorder characterized by abnormal brain cell activity that results in seizures. It causes progressive damage to neurons. Epilepsy treatment currently focuses mostly on symptoms, which also have risks of unwanted side effects. There is currently no effective treatment to prevent epileptogenesis and the resulting neural damage. Human Umbilical Cord Mesenchymal Stem Cell (hUMSC) and exosome therapy are examples of cellular therapies that may be used to treat degenerative diseases, such as epilepsy, or cell damage. However, there is still little research on the use of hUMSCs or hUMSC-exosomes for treating epilepsy. Hence, the purpose of this paper is to compare the potential and risk of hUMSCs and hUMSC-exosomes as therapies for epilepsy. This article provides a brief summary of hUMSCs and hUMSC-exosomes in multiple aspects, such as the isolation and purification method, the mechanism of action, immunological compatibility, tumorigenicity, the risk of transmitting disease, stability upon storage, the potential of new composition with other substances, and also ethical and political issues. We conclude that hUMSCs and hUMSC-exosomes have therapeutic potential for epilepsy, with hUMSC-exosomes being safer due to their reduced immunogenicity.

3.
J Stem Cells Regen Med ; 14(2): 69-79, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30679891

RESUMO

Thrombolysis (rt-PA) is the only United States Food and Drug Administration (FDA) approved drug currently available. Unfortunately, its effect has been limited by the narrow therapeutic time window. Human cord blood mononuclear cells (cbMNC) is a promising treatment for ischemic stroke by forming collateral and neo-vascularization where it is one of the important factors that contribute to cell repair. Therefore, evaluation of neo-vascularization in sub-acute stroke may be beneficial for recovery. One group for healthy rat and three groups (n=6 per group) of male wistar rats have undergone permanent middle cerebral artery occlusion (MCAO). Transplantation 1x106 cells/kg of human cbMNC intra-arterially (IA) and intra-venously (IV) were administered after 7 days. Behavioural tests were performed before MCAO, 1 week after MCAO and at 3,9 and 14 days after cbMNC transplantation. Beta III tubulin protein (TUJ1), glial fibrillary acidic protein (GFAP) and vascular endothelial growth factor (VEGF) antibody marker were evaluated. Spontaneous activity of transplanted rats by cbMNC have significantly improved compared to placebo group (p<0.05). Angiogenesis in IA group showed significant difference (P<0.001) when compared to IV and placebo respectively. The existence of neovascularization in the transplanted rats of cbMNC provide hope in accelerating repairment of the neuronal cells and functional outcome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA