Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 186(4): 962-73, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26878209

RESUMO

Inflammation and its natural resolution are host-protective responses triggered by infection or injury. The resolution phase of inflammation is regulated by enzymatically produced specialized pro-resolving mediators. We recently identified a new class of peptide-conjugated specialized pro-resolving mediators that carry potent tissue regenerative actions that belong to the protectin family and are coined protectin conjugates in tissue regeneration (PCTR). Herein, with the use of microbial-induced peritonitis in mice and liquid chromatography-tandem mass spectrometry-based lipid mediator metabololipidomics, we found that PCTR1 is temporally regulated during self-resolving infection. When administered at peak of inflammation, PCTR1 enhanced macrophage recruitment and phagocytosis of Escherichia coli, decreased polymorphonuclear leukocyte infiltration, and counter-regulated inflammation-initiating lipid mediators, including prostaglandins. In addition, biologically produced PCTR1 promoted human monocyte and macrophage migration in a dose-dependent manner (0.001 to 10.0 nmol/L). We prepared PCTR1 via organic synthesis and confirmed that synthetic PCTR1 increased macrophage and monocyte migration, enhanced macrophage efferocytosis, and accelerated tissue regeneration in planaria. With human macrophage subsets, PCTR1 levels were significantly higher in M2 macrophages than in M1 phenotype, along with members of the resolvin conjugates in tissue regeneration and maresin conjugate families. In contrast, M1 macrophages gave higher levels of cysteinyl leukotrienes. Together, these results demonstrate that PCTR1 is a potent monocyte/macrophage agonist, regulating key anti-inflammatory and pro-resolving processes during bacterial infection.


Assuntos
Infecções por Escherichia coli/microbiologia , Macrófagos/citologia , Monócitos/efeitos dos fármacos , Fagocitose/fisiologia , Animais , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/farmacologia , Escherichia coli/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Masculino , Camundongos , Fagocitose/efeitos dos fármacos
2.
Eur J Immunol ; 46(1): 81-91, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26474728

RESUMO

Specialized proresolving mediators (SPMs) constitute a recently recognized class of bioactive molecules thatpromote the resolution of inflammation. We recently reported that the SPMs resolvin D1 (RvD1) and 17-hydroxydocosahexaenoic acid (17-HDHA) promote the differentiation of IgG-secreting B cells and enhance antibody-mediated immune responses. However, there is an important knowledge gap regarding whether or not SPMs regulate human B-cell IgE production, which is the key effector in diseases such as asthma and allergy. Therefore, we investigated whether a panel of diverse SPMs influences B-cell IgE production. An important finding was that 17-HDHA and RvD1 inhibit IgE production by human B cells and suppress the differentiation of naïve B cells into IgE-secreting cells by specifically blocking epsilon germline transcript. This effect is specific to human IgE, as the SPMs do not inhibit production of IgM and IgG and did not suppress other IL-4-upregulated genes. 17-HDHA and RvD1 act by stabilizing the transcriptional repressor B-cell lymphoma 6, which competes with STAT6 for binding at the epsilon germline transcript promoter. Overall, these new findings demonstrate that certain SPMs inhibit the differentiation of IgE-producing B cells, without being broadly immune suppressive, representing a novel class of potential therapeutics for IgE-driven diseases such as asthma and allergy.


Assuntos
Linfócitos B/metabolismo , Ácidos Docosa-Hexaenoicos/imunologia , Regulação da Expressão Gênica/imunologia , Imunoglobulina E/biossíntese , Ativação Linfocitária/imunologia , Linfócitos B/imunologia , Western Blotting , Diferenciação Celular/imunologia , Células Cultivadas , Imunoprecipitação da Cromatina , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Switching de Imunoglobulina/imunologia , Reação em Cadeia da Polimerase em Tempo Real
3.
FASEB J ; 29(5): 2120-36, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25713027

RESUMO

Local mediators orchestrate the host response to both sterile and infectious challenge and resolution. Recent evidence demonstrates that maresin sulfido-conjugates actively resolve acute inflammation and promote tissue regeneration. In this report, we investigated self-limited infectious exudates for novel bioactive chemical signals in tissue regeneration and resolution. By use of spleens from Escherichia coli infected mice, self-resolving infectious exudates, human spleens, and blood from patients with sepsis, we identified 2 new families of potent molecules. Characterization of their physical properties and isotope tracking demonstrated that the bioactive structures contained a docosahexaenoate backbone and sulfido-conjugated triene or tetraene double-bond systems. Activated human phagocytes converted 17-hydro(peroxy)-4Z,7Z,10Z,13Z,15E,19Z-docosahexaenoic acid to these bioactive molecules. Regeneration of injured planaria was accelerated with nanomolar amounts of 16-glutathionyl, 17-hydroxy-4Z,7Z,10,12,14,19Z-docosahexaenoic acid and 16-cysteinylglycinyl, 17-hydroxy-4Z,7Z,10,12,14,19Z-docosahexaenoic acid (Protectin sulfido-conjugates) or 8-glutathionyl, 7,17-dihydroxy-4Z,9,11,13Z,15E,19Z-docosahexaenoic acid and 8-cysteinylglycinyl, 7,17-dihydroxy-4Z,9,11,13Z,15E,19Z-docosahexaenoic acid (Resolvin sulfido-conjugates). Each protectin and resolvin sulfido-conjugate dose dependently (0.1-10 nM) stimulated human macrophage bacterial phagocytosis, phagolysosomal acidification, and efferocytosis. Together, these results identify 2 novel pathways and provide evidence for structural elucidation of new resolution moduli. These resolvin and protectin conjugates identified in mice and human infected tissues control host responses promoting catabasis.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antígenos CD59/química , Ácidos Docosa-Hexaenoicos/química , Fagocitose/efeitos dos fármacos , Planárias/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Animais , Células Cultivadas , Cromatografia Líquida , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Humanos , Inflamação/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Peritonite/tratamento farmacológico , Peritonite/microbiologia , Peritonite/patologia , Planárias/citologia , Regeneração/fisiologia , Sepse/tratamento farmacológico , Sepse/microbiologia , Sepse/patologia , Baço/citologia , Baço/efeitos dos fármacos , Baço/metabolismo , Espectrometria de Massas em Tandem
4.
J Immunol ; 193(12): 6031-40, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25392529

RESUMO

Influenza viruses remain a critical global health concern. More efficacious vaccines are needed to protect against influenza virus, yet few adjuvants are approved for routine use. Specialized proresolving mediators (SPMs) are powerful endogenous bioactive regulators of inflammation, with great clinical translational properties. In this study, we investigated the ability of the SPM 17-HDHA to enhance the adaptive immune response using an OVA immunization model and a preclinical influenza vaccination mouse model. Our findings revealed that mice immunized with OVA plus 17-HDHA or with H1N1-derived HA protein plus 17-HDHA increased Ag-specific Ab titers. 17-HDHA increased the number of Ab-secreting cells in vitro and the number of HA-specific Ab-secreting cells present in the bone marrow. Importantly, the 17-HDHA-mediated increased Ab production was more protective against live pH1N1 influenza infection in mice. To our knowledge, this is the first report on the biological effects of ω-3-derived SPMs on the humoral immune response. These findings illustrate a previously unknown biological link between proresolution signals and the adaptive immune system. Furthermore, this work has important implications for the understanding of B cell biology, as well as the development of new potential vaccine adjuvants.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Imunidade Humoral/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Antivirais/imunologia , Formação de Anticorpos/efeitos dos fármacos , Formação de Anticorpos/imunologia , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/efeitos dos fármacos , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Masculino , Camundongos , Infecções por Orthomyxoviridae/virologia , Plasmócitos/citologia , Plasmócitos/efeitos dos fármacos , Plasmócitos/imunologia , Plasmócitos/metabolismo
5.
J Nat Prod ; 77(10): 2241-7, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25247845

RESUMO

Protectin D1 (PD1 (3)), a C22-dihydroxylated polyunsaturated fatty acid biosynthesized from all-Z-docosahexaenoic acid, belongs to the new family of endogenous mediators referred to as specialized pro-resolving lipid mediators. PD1 (3) is a natural product that displays potent anti-inflammatory properties together with pro-resolving actions including inhibition of polymorphonuclear leukocyte (PMN) infiltration and promotion of macrophage phagocytosis and efferocytosis. Given its potent endogenous actions, this compound has entered several clinical development programs. Little has been reported on the metabolism of PD1 (3). The synthesis and biological evaluations of the ω-22 monohydroxylated metabolite of PD1 (3), named herein 22-OH-PD1 (6), are presented. LC-MS/MS data of the free acid 6, obtained from hydrolysis of the synthetic methyl ester 7, matched data for the endogenously produced 22-OH-PD1 (6). Compound 6 exhibited potent pro-resolving actions by inhibiting PMN chemotaxis in vivo and in vitro comparable to its precursor PD1 (3) and decreased pro-inflammatory mediator levels in inflammatory exudates. The results reported herein provide new knowledge of the metabolism of the protectin class of specialized pro-resolving mediators.


Assuntos
Ácidos Docosa-Hexaenoicos/síntese química , Ácidos Docosa-Hexaenoicos/farmacologia , Anti-Inflamatórios/farmacologia , Quimiotaxia/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/química , Ésteres , Ácidos Graxos Insaturados/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Estrutura Molecular , Neutrófilos/efeitos dos fármacos , Espectrometria de Massas em Tandem
6.
Curr Angiogenes ; 2(2): 135-142, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24883266

RESUMO

Inflammation is implicated in the progression of multiple types of cancers including lung, colorectal, breast and hematological malignancies. Cyclooxygenases (Cox) -1 and -2 are important enzymes involved in the regulation of inflammation. Elevated Cox-2 expression is associated with a poor cancer prognosis. Hematological malignancies, which are among the top 10 most predominant cancers in the USA, express high levels of Cox-2. Current therapeutic approaches against hematological malignances are insufficient as many patients develop resistance or relapse. Therefore, targeting Cox-2 holds promise as a therapeutic approach to treat hematological malignancies. NSAIDs and Cox-2 selective inhibitors are anti-inflammatory drugs that decrease prostaglandin and thromboxane production while promoting the synthesis of specialized proresolving mediators. Here, we review the evidence regarding the applicability of NSAIDs, such as aspirin, as well as Cox-2 specific inhibitors, to treat hematological malignancies. Furthermore, we discuss how FDA-approved Cox inhibitors can be used as anti-cancer drugs alone or in combination with existing chemotherapeutic treatments.

7.
J Immunol ; 189(10): 4740-7, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23041568

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily. PPARγ, a ligand-activated transcription factor, has important anti-inflammatory and antiproliferative functions, and it has been associated with diseases including diabetes, scarring, and atherosclerosis, among others. PPARγ is expressed in most bone marrow-derived cells and influences their function. PPARγ ligands can stimulate human B cell differentiation and promote Ab production. A knowledge gap is that the role of PPARγ in B cells under physiological conditions is not known. We developed a new B cell-specific PPARγ (B-PPARγ) knockout mouse and explored the role of PPARγ during both the primary and secondary immune response. In this article, we show that PPARγ deficiency in B cells decreases germinal center B cells and plasma cell development, as well as the levels of circulating Ag-specific Abs during a primary challenge. Inability to generate germinal center B cells and plasma cells is correlated to decreased MHC class II expression and decreased Bcl-6 and Blimp-1 levels. Furthermore, B-PPARγ-deficient mice have an impaired memory response, characterized by low titers of Ag-specific Abs and low numbers of Ag-experienced, Ab-secreting cells. However, B-PPARγ-deficient mice have no differences in B cell population distribution within primary or secondary lymphoid organs during development. This is the first report, to our knowledge, to show that, under physiological conditions, PPARγ expression in B cells is required for an efficient B cell-mediated immune response as it regulates B cell differentiation and Ab production.


Assuntos
Anticorpos/imunologia , Formação de Anticorpos/fisiologia , Especificidade de Anticorpos/fisiologia , Diferenciação Celular/imunologia , PPAR gama/imunologia , Plasmócitos/imunologia , Animais , Anticorpos/genética , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Humanos , Camundongos , Camundongos Knockout , Especificidade de Órgãos , PPAR gama/genética , Plasmócitos/citologia , Fator 1 de Ligação ao Domínio I Regulador Positivo , Proteínas Proto-Oncogênicas c-bcl-6 , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
8.
PPAR Res ; 2012: 705352, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22778711

RESUMO

Peroxisome proliferator activated receptor (PPAR)-γ is a nuclear hormone receptor that is activated by multiple agonists including thiazolidinediones, prostaglandins, and synthetic oleanolic acids. Many PPARγ ligands are under investigation as potential therapies for human diseases. These ligands modulate multiple cellular pathways via both PPARγ-dependent and PPARγ-independent mechanisms. Here, we review the role of PPARγ and PPARγ ligands in lung disease, with emphasis on PPARγ-independent effects. PPARγ ligands show great promise in moderating lung inflammation, as antiproliferative agents in combination to enhance standard chemotherapy in lung cancer and as treatments for pulmonary fibrosis, a progressive fatal disease with no effective therapy. Some of these effects occur when PPARγ is pharmaceutically antagonized or genetically PPARγ and are thus independent of classical PPARγ-dependent transcriptional control. Many PPARγ ligands demonstrate direct binding to transcription factors and other proteins, altering their function and contributing to PPARγ-independent inhibition of disease phenotypes. These PPARγ-independent mechanisms are of significant interest because they suggest new therapeutic uses for currently approved drugs and because they can be used as probes to identify novel proteins and pathways involved in the pathogenesis or treatment of disease, which can then be targeted for further investigation and drug development.

9.
J Immunol ; 189(2): 1036-42, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22711890

RESUMO

The resolution of inflammation is an active and dynamic process critical in maintaining homeostasis. Newly identified lipid mediators have been recognized as key players during the resolution phase. These specialized proresolving mediators (SPM) constitute separate families that include lipoxins, resolvins, protectins, and maresins, each derived from essential polyunsaturated fatty acids. New results demonstrate that SPM regulate aspects of the immune response, including reduction of neutrophil infiltration, decreased T cell cytokine production, and stimulation of macrophage phagocytic activity. The actions of SPM on B lymphocytes remain unknown. Our study shows that the novel SPM 17-hydroxydosahexaenoic acid (17-HDHA), resolvin D1, and protectin D1 are present in the spleen. Interestingly, 17-HDHA and resolvin D1, but not protectin D1, strongly increase activated human B cell IgM and IgG production. Furthermore, increased Ab production by 17-HDHA is due to augmented B cell differentiation toward a CD27(+)CD38(+) Ab-secreting cell phenotype. The 17-HDHA did not affect proliferation and was nontoxic to cells. Increase of plasma cell differentiation and Ab production supports the involvement of SPM during the late stages of inflammation and pathogen clearance. The present study provides new evidence for SPM activity in the humoral response. These new findings highlight the potential applications of SPM as endogenous and nontoxic adjuvants, and as anti-inflammatory therapeutic molecules.


Assuntos
Células Produtoras de Anticorpos/citologia , Células Produtoras de Anticorpos/imunologia , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/imunologia , Diferenciação Celular/imunologia , Ácidos Docosa-Hexaenoicos/fisiologia , Regulação para Cima/imunologia , Animais , Células Produtoras de Anticorpos/metabolismo , Subpopulações de Linfócitos B/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida , Humanos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos , Espectrometria de Massas em Tandem , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA