Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5694, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972873

RESUMO

Tumor-associated myeloid-derived cells (MDCs) significantly impact cancer prognosis and treatment responses due to their remarkable plasticity and tumorigenic behaviors. Here, we integrate single-cell RNA-sequencing data from different cancer types, identifying 29 MDC subpopulations within the tumor microenvironment. Our analysis reveals abnormally expanded MDC subpopulations across various tumors and distinguishes cell states that have often been grouped together, such as TREM2+ and FOLR2+ subpopulations. Using deconvolution approaches, we identify five subpopulations as independent prognostic markers, including states co-expressing TREM2 and PD-1, and FOLR2 and PDL-2. Additionally, TREM2 alone does not reliably predict cancer prognosis, as other TREM2+ macrophages show varied associations with prognosis depending on local cues. Validation in independent cohorts confirms that FOLR2-expressing macrophages correlate with poor clinical outcomes in ovarian and triple-negative breast cancers. This comprehensive MDC atlas offers valuable insights and a foundation for futher analyses, advancing strategies for treating solid cancers.


Assuntos
Glicoproteínas de Membrana , Células Mieloides , Neoplasias , Receptores Imunológicos , Análise de Célula Única , Microambiente Tumoral , Humanos , Análise de Célula Única/métodos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Células Mieloides/metabolismo , Células Mieloides/patologia , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Prognóstico , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Feminino , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética
4.
Nat Commun ; 13(1): 3739, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768432

RESUMO

Tumor-infiltrating CD8 + T cells progressively lose functionality and fail to reject tumors. The underlying mechanism and re-programing induced by checkpoint blockers are incompletely understood. We show here that genetic ablation or pharmacological inhibition of histone lysine methyltransferase Suv39h1 delays tumor growth and potentiates tumor rejection by anti-PD-1. In the absence of Suv39h1, anti-PD-1 induces alternative activation pathways allowing survival and differentiation of IFNγ and Granzyme B producing effector cells that express negative checkpoint molecules, but do not reach final exhaustion. Their transcriptional program correlates with that of melanoma patients responding to immune-checkpoint blockade and identifies the emergence of cytolytic-effector tumor-infiltrating lymphocytes as a biomarker of clinical response. Anti-PD-1 favors chromatin opening in loci linked to T-cell activation, memory and pluripotency, but in the absence of Suv39h1, cells acquire accessibility in cytolytic effector loci. Overall, Suv39h1 inhibition enhances anti-tumor immune responses, alone or combined with anti-PD-1, suggesting that Suv39h1 is an "epigenetic checkpoint" for tumor immunity.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Metiltransferases , Receptor de Morte Celular Programada 1 , Proteínas Repressoras , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Epigênese Genética , Humanos , Ativação Linfocitária , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Melanoma/genética , Melanoma/imunologia , Melanoma/terapia , Metiltransferases/antagonistas & inibidores , Metiltransferases/genética , Metiltransferases/imunologia , Metiltransferases/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
5.
Cancers (Basel) ; 14(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35681646

RESUMO

In this systematic review, we foresee what could be the approved scenario in the next few years for CAR-T cell therapies directed against hematological and solid tumor malignancies. China and the USA are the leading regions in numbers of clinical studies involving CAR-T. Hematological antigens CD19 and BCMA are the most targeted, followed by mesothelin, GPC3, CEA, MUC1, HER2, and EGFR for solid tumors. Most CAR constructs are second-generation, although third and fourth generations are being largely explored. Moreover, the benefit of combining CAR-T treatment with immune checkpoint inhibitors and other drugs is also being assessed. Data regarding product formulation and administration, such as cell phenotype, transfection technique, and cell dosage, are scarce and could not be retrieved. Better tracking of trials' status and results on the ClinicalTrials.gov database should aid in a more concise and general view of the ongoing clinical trials involving CAR-T cell therapy.

6.
Clin Transl Immunology ; 11(5): e1392, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573979

RESUMO

Objective: Antitumor viral vaccines, and more particularly poxviral vaccines, represent an active field for clinical development and translational research. To improve the efficacy and treatment outcome, new viral vectors are sought, with emphasis on their abilities to stimulate innate immunity, to display tumor antigens and to induce a specific T-cell response. Methods: We screened for a new poxviral backbone with improved innate and adaptive immune stimulation using IFN-α secretion levels in infected PBMC cultures as selection criteria. Assessment of virus effectiveness was made in vitro and in vivo. Results: The bovine pseudocowpox virus (PCPV) stood out among several poxviruses for its ability to induce significant secretion of IFN-α. PCPV produced efficient activation of human monocytes and dendritic cells, degranulation of NK cells and reversed MDSC-induced T-cell suppression, without being offensive to activated T cells. A PCPV-based vaccine, encoding the HPV16 E7 protein (PCPV-E7), stimulated strong antigen-specific T-cell responses in TC1 tumor-bearing mice. Complete regression of tumors was obtained in a CD8+ T-cell-dependent manner after intratumoral injection of PCPV-E7, followed by intravenous injection of the cancer vaccine MVA-E7. PCPV also proved active when injected repeatedly intratumorally in MC38 tumor-bearing mice, generating tumor-specific T-cell responses without encoding a specific MC38 antigen. From a translational perspective, we demonstrated that PCPV-E7 effectively stimulated IFN-γ production by T cells from tumor-draining lymph nodes of HPV+-infected cancer patients. Conclusion: We propose PCPV as a viral vector suitable for vaccination in the field of personalised cancer vaccines, in particular for heterologous prime-boost regimens.

7.
Hematol Transfus Cell Ther ; 43 Suppl 2: S46-S53, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34794797

RESUMO

Chimeric Antigen Receptor T (CAR-T) cells are certainly an important therapy for patients with relapsed and/or refractory hematologic malignancies. Currently, there are five CAR-T cell products approved by the FDA but several research groups and/or biopharmaceutical companies are encouraged to develop new products based on CAR cells using T or other cell types. Production of CAR cells requires intensive work from the basic, pre-clinical to translational levels, aiming to overcome technical difficulties and failure in the production. At least five key common steps are needed for the manipulation of T-lymphocytes (or other cells), such as: cell type selection, activation, gene delivery, cell expansion and final product formulation. However, reproducible manufacturing of high-quality clinical-grade CAR cell products is still required to apply this technology to a greater number of patients. This chapter will discuss the present and future development of new CAR designs that are safer and more effective to improve this therapy, achieving more selective killing of malignant cells and less toxicity to be applied in the clinical setting.

8.
Hematol Transfus Cell Ther ; 43 Suppl 2: S54-S63, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34794798

RESUMO

Currently, there are four CAR-T products commercially available on the market. CAR-T cells have shown high remission rates and they represent an effective treatment option for patients with resistant or refractory B cell malignancies. Approval of these cell therapy products came after an extended period of preclinical evaluation that demonstrated unprecedented efficacy in this difficult-to-treat patient population. This review article outlines the main preclinical evaluations needed for CAR T cell product development.

9.
Cell ; 184(20): 5230-5246.e22, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34551315

RESUMO

Although mutations leading to a compromised nuclear envelope cause diseases such as muscular dystrophies or accelerated aging, the consequences of mechanically induced nuclear envelope ruptures are less known. Here, we show that nuclear envelope ruptures induce DNA damage that promotes senescence in non-transformed cells and induces an invasive phenotype in human breast cancer cells. We find that the endoplasmic reticulum (ER)-associated exonuclease TREX1 translocates into the nucleus after nuclear envelope rupture and is required to induce DNA damage. Inside the mammary duct, cellular crowding leads to nuclear envelope ruptures that generate TREX1-dependent DNA damage, thereby driving the progression of in situ carcinoma to the invasive stage. DNA damage and nuclear envelope rupture markers were also enriched at the invasive edge of human tumors. We propose that DNA damage in mechanically challenged nuclei could affect the pathophysiology of crowded tissues by modulating proliferation and extracellular matrix degradation of normal and transformed cells.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Dano ao DNA , Exodesoxirribonucleases/metabolismo , Membrana Nuclear/metabolismo , Fosfoproteínas/metabolismo , Animais , Linhagem Celular , Senescência Celular , Colágeno/metabolismo , Progressão da Doença , Feminino , Humanos , Camundongos , Invasividade Neoplásica , Membrana Nuclear/ultraestrutura , Proteólise , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Front Cell Dev Biol ; 9: 784421, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977027

RESUMO

Chimeric antigen receptor (CAR) engineering for T cells and natural killer cells (NK) are now under clinical evaluation for the treatment of hematologic cancers. Although encouraging clinical results have been reported for hematologic diseases, pre-clinical studies in solid tumors have failed to prove the same effectiveness. Thus, there is a growing interest of the scientific community to find other immune cell candidate to express CAR for the treatment of solid tumors and other diseases. Mononuclear phagocytes may be the most adapted group of cells with potential to overcome the dense barrier imposed by solid tumors. In addition, intrinsic features of these cells, such as migration, phagocytic capability, release of soluble factors and adaptive immunity activation, could be further explored along with gene therapy approaches. Here, we discuss the elements that constitute the tumor microenvironment, the features and advantages of these cell subtypes and the latest studies using CAR-myeloid immune cells in solid tumor models.

11.
Nat Commun ; 11(1): 3272, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601304

RESUMO

Tumor-draining lymph node (TDLN) invasion by metastatic cells in breast cancer correlates with poor prognosis and is associated with local immunosuppression, which can be partly mediated by regulatory T cells (Tregs). Here, we study Tregs from matched tumor-invaded and non-invaded TDLNs, and breast tumors. We observe that Treg frequencies increase with nodal invasion, and that Tregs express higher levels of co-inhibitory/stimulatory receptors than effector cells. Also, while Tregs show conserved suppressive function in TDLN and tumor, conventional T cells (Tconvs) in TDLNs proliferate and produce Th1-inflammatory cytokines, but are dysfunctional in the tumor. We describe a common transcriptomic signature shared by Tregs from tumors and nodes, including CD80, which is significantly associated with poor patient survival. TCR RNA-sequencing analysis indicates trafficking between TDLNs and tumors and ongoing Tconv/Treg conversion. Overall, TDLN Tregs are functional and express a distinct pattern of druggable co-receptors, highlighting their potential as targets for cancer immunotherapy.


Assuntos
Linfonodos/patologia , Metástase Linfática/imunologia , Linfócitos T Reguladores/imunologia , Antígeno B7-1/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Terapia de Imunossupressão , Linfonodos/citologia , Linfonodos/imunologia , Metástase Linfática/patologia , Linfócitos T Reguladores/metabolismo
12.
Immunity ; 53(2): 335-352.e8, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32610077

RESUMO

Dendritic cells (DCs) are antigen-presenting cells controlling T cell activation. In humans, the diversity, ontogeny, and functional capabilities of DC subsets are not fully understood. Here, we identified circulating CD88-CD1c+CD163+ DCs (called DC3s) as immediate precursors of inflammatory CD88-CD14+CD1c+CD163+FcεRI+ DCs. DC3s develop via a specific pathway activated by GM-CSF, independent of cDC-restricted (CDP) and monocyte-restricted (cMoP) progenitors. Like classical DCs but unlike monocytes, DC3s drove activation of naive T cells. In vitro, DC3s displayed a distinctive ability to prime CD8+ T cells expressing a tissue homing signature and the epithelial homing alpha-E integrin (CD103) through transforming growth factor ß (TGF-ß) signaling. In vivo, DC3s infiltrated luminal breast cancer primary tumors, and DC3 infiltration correlated positively with CD8+CD103+CD69+ tissue-resident memory T cells. Together, these findings define DC3s as a lineage of inflammatory DCs endowed with a strong potential to regulate tumor immunity.


Assuntos
Antígenos CD1/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Neoplasias da Mama/imunologia , Linfócitos T CD8-Positivos/citologia , Células Dendríticas/imunologia , Glicoproteínas/metabolismo , Cadeias alfa de Integrinas/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Antígenos CD8/metabolismo , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos NOD , Fator de Crescimento Transformador beta1/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo
13.
Clin Transl Immunology ; 9(2): e1108, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32082570

RESUMO

OBJECTIVES: The accumulation of tumor-associated macrophages (TAMs) is correlated with poor clinical outcome, but the mechanisms governing their differentiation from circulating monocytes remain unclear in humans. METHODS: Using multicolor flow cytometry, we evaluated TAMs phenotype in 93 breast cancer (BC) patients. Furthermore, monocytes from healthy donors were cultured in the presence of supernatants from dilacerated primary tumors to investigate their differentiation into macrophages (MΦ) in vitro. Additionally, we used transcriptomic analysis to evaluate BC patients' blood monocytes profiles. RESULTS: We observed that high intra-tumor CD163-expressing TAM density is predictive of reduced survival in BC patients. In vitro, M-CSF, TGF-ß and VEGF from primary tumor supernatants skewed the differentiation of healthy donor blood monocytes towards CD163highCD86lowIL-10high M2-like MΦ that strongly suppressed CD4+ T-cell expansion via PD-L1 and IL-10. In addition, blood monocytes from about 40% of BC patients displayed an altered response to in vitro stimulation, being refractory to type-1 MΦ (M1-MΦ) differentiation and secreting higher amounts of immunosuppressive, metastatic-related and angiogenic cytokines. Aside from showing that monocyte transcriptome is significantly altered by the presence of BC, we also demonstrated an overall metabolic de-activation in refractory monocytes of BC patients. In contrast, monocytes from sensitive BC patients undergoing normal M1-MΦ differentiation showed up-regulation of IFN-response genes and had no signs of metabolic alteration. CONCLUSION: Altogether, our results suggest that systemic factors skew BC patient blood monocytes towards a pro-metastatic profile, resulting in the accumulation of further polarised CD163high TAMs resembling type-2 MΦ (M2-MΦ) in the local BC microenvironment. These data indicate that monitoring circulating monocytes in BC patients may provide an indication of early systemic alterations induced by cancer and, thus, be instrumental in the development of improved personalised immunotherapeutic interventions.

14.
Cancer Cell ; 36(6): 597-612.e8, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31708437

RESUMO

Rhabdoid tumors (RTs) are genomically simple pediatric cancers driven by the biallelic inactivation of SMARCB1, leading to SWI/SNF chromatin remodeler complex deficiency. Comprehensive evaluation of the immune infiltrates of human and mice RTs, including immunohistochemistry, bulk RNA sequencing and DNA methylation profiling studies showed a high rate of tumors infiltrated by T and myeloid cells. Single-cell RNA (scRNA) and T cell receptor sequencing highlighted the heterogeneity of these cells and revealed therapeutically targetable exhausted effector and clonally expanded tissue resident memory CD8+ T subpopulations, likely representing tumor-specific cells. Checkpoint blockade therapy in an experimental RT model induced the regression of established tumors and durable immune responses. Finally, we show that one mechanism mediating RTs immunogenicity involves SMARCB1-dependent re-expression of endogenous retroviruses and interferon-signaling activation.


Assuntos
Montagem e Desmontagem da Cromatina/imunologia , Tumor Rabdoide/genética , Tumor Rabdoide/imunologia , Linfócitos T/imunologia , Animais , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Humanos , Imuno-Histoquímica/métodos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
15.
Sci Rep ; 7: 39884, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28084303

RESUMO

Uric acid is a damage-associated molecular pattern (DAMP), released from ischemic tissues and dying cells which, when crystalized, is able to activate the NLRP3 inflammasome. Soluble uric acid (sUA) is found in high concentrations in the serum of great apes, and even higher in some diseases, before the appearance of crystals. In the present study, we sought to investigate whether uric acid, in the soluble form, could also activate the NLRP3 inflammasome and induce the production of IL-1ß. We monitored ROS, mitochondrial area and respiratory parameters from macrophages following sUA stimulus. We observed that sUA is released in a hypoxic environment and is able to induce IL-1ß release. This process is followed by production of mitochondrial ROS, ASC speck formation and caspase-1 activation. Nlrp3-/- macrophages presented a protected redox state, increased maximum and reserve oxygen consumption ratio (OCR) and higher VDAC protein levels when compared to WT and Myd88-/- cells. Using a disease model characterized by increased sUA levels, we observed a correlation between sUA, inflammasome activation and fibrosis. These findings suggest sUA activates the NLRP3 inflammasome. We propose that future therapeutic strategies for renal fibrosis should include strategies that block sUA or inhibit its recognition by phagocytes.


Assuntos
Inflamassomos/metabolismo , Nefropatias/metabolismo , Rim/patologia , Macrófagos/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Úrico/metabolismo , Animais , Caspase 1/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Fibrose , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo
16.
J Allergy Clin Immunol ; 139(3): 900-912.e7, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27554817

RESUMO

BACKGROUND: CD40 ligand (CD40L) deficiency predisposes to opportunistic infections, including those caused by fungi and intracellular bacteria. Studies of CD40L-deficient patients reveal the critical role of CD40L-CD40 interaction for the function of T, B, and dendritic cells. However, the consequences of CD40L deficiency on macrophage function remain to be investigated. OBJECTIVES: We sought to determine the effect of CD40L absence on monocyte-derived macrophage responses. METHODS: After observing the improvement of refractory disseminated mycobacterial infection in a CD40L-deficient patient by recombinant human IFN-γ (rhIFN-γ) adjuvant therapy, we investigated macrophage functions from CD40L-deficient patients. We analyzed the killing activity, oxidative burst, cytokine production, and in vitro effects of rhIFN-γ and soluble CD40 ligand (sCD40L) treatment on macrophages. In addition, the effect of CD40L absence on the macrophage transcriptome before and after rhIFN-γ treatment was studied. RESULTS: Macrophages from CD40L-deficient patients exhibited defective fungicidal activity and reduced oxidative burst, both of which improved in the presence of rhIFN-γ but not sCD40L. In contrast, rhIFN-γ and sCD40L ameliorate impaired production of inflammatory cytokines. Furthermore, rhIFN-γ reversed defective control of Mycobacterium tuberculosis proliferation by patients' macrophages. The absence of CD40L dysregulated the macrophage transcriptome, which was improved by rhIFN-γ. Additionally, rhIFN-γ increased expression levels of pattern recognition receptors, such as Toll-like receptors 1 and 2, dectin 1, and dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin in macrophages from both control subjects and patients. CONCLUSION: Absence of CD40L impairs macrophage development and function. In addition, the improvement of macrophage immune responses by IFN-γ suggests this cytokine as a potential therapeutic option for patients with CD40L deficiency.


Assuntos
Ligante de CD40/deficiência , Síndromes de Imunodeficiência/imunologia , Interferon gama/farmacologia , Macrófagos/efeitos dos fármacos , Adolescente , Adulto , Células Cultivadas , Criança , Pré-Escolar , Humanos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/fisiologia , Masculino , Monócitos/citologia , Mycobacterium tuberculosis , Fagocitose , Transcriptoma/efeitos dos fármacos , Adulto Jovem
18.
PLoS One ; 9(5): e98050, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24846008

RESUMO

BACKGROUND: Mesenchymal stem cells have prominent immune modulatory properties, which may have clinical applications; however their major source, bone marrow, is of limited availability. On the other hand, mesenchymal stem cells derived from human exfoliated deciduous teeth (SHEDs) are readily accessible, but their immune regulatory properties have not been completely investigated. This study was designed, therefore, to evaluate the SHEDs influence on DCs differentiation, maturation, ability to activate T cells and to expand CD4(+)Foxp3(+) T cells. METHODOLOGY/PRINCIPAL FINDINGS: The experiments were based in cellular co-culture during differentiation and maturation of monocyte derived-DCs (moDCs), with, or not, presence of SHEDs. After co-culture with SHEDs, (moDCs) presented lower expression of BDCA-1 and CD11c, in comparison to DC cultivated without SHEDs. CD40, CD80, CD83 and CD86 levels were also decreased in mature DCs (mDCs) after co-cultivation with SHEDs. To assess the ability of SHEDs-exposed moDCs to modulate T cell responses, the former were separated from SHEDs, and co-cultured with peripheral blood lymphocytes. After 5 days, the proliferation of CD4(+) and CD8(+) T cells was evaluated and found to be lower than that induced by moDCs cultivated without SHEDs. In addition, an increase in the proportion of CD4(+)Foxp3(+)IL-10(+) T cells was observed among cells stimulated by mature moDCs that were previously cultivated with SHEDs. Soluble factors released during co-cultures also showed a reduction in the pro-inflammatory cytokines (IL-2, TNF-α and IFN-γ), and an increase in the anti-inflammatory molecule IL-10. CONCLUSION/SIGNIFICANCE: This study shows that SHEDs induce an immune regulatory phenotype in moDCs cells, evidenced by changes in maturation and differentiation rates, inhibition of lymphocyte stimulation and ability to expand CD4(+)Foxp3(+) T cells. Further characterization and validation of this phenomenon could support the use of SHEDs, directly or indirectly for immune modulation in the clinical practice.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Esfoliação de Dente/imunologia , Esfoliação de Dente/metabolismo , Antígenos CD1/metabolismo , Biomarcadores/metabolismo , Antígenos CD40/metabolismo , Diferenciação Celular , Técnicas de Cocultura , Citocinas/metabolismo , Células Dendríticas/citologia , Fatores de Transcrição Forkhead/metabolismo , Glicoproteínas/metabolismo , Humanos , Imunomodulação , Interleucina-10/metabolismo , Ativação Linfocitária/imunologia , Monócitos/citologia , Fenótipo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
19.
Carcinogenesis ; 35(2): 424-31, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24031027

RESUMO

Engagement of programmed death-1 (PD-1) with its two ligands [programmed death ligand-1 (PD-L1) and PD-L2] has been associated with the suppression of tumor-reactive T cells; however, the underlying mechanism for this T-cell dysfunction is not clear. We hypothesized that PD-1 and PD-L1 signals are, in part, responsible for squamous cell carcinoma (SCC) escape from immune antitumor regulation by modulation of the tumor environment. In the present study, we used a multistage model of SCC to examine the role of PD-1/PD-L1 activation during tumor development. Tumor sites presented an increased percentage of CD4(+) and CD8(+) T cells expressing PD-1 when compared with non-tumorigenic control mice, whereas the expression of PD-L1 was particularly increased in F4/80(+) macrophages in tumor sites. Further, the systemic immune neutralization of PD-1 resulted in a decreased number and delayed incidence rate of papillomas followed by a differential expression of cytokeratins, suggesting that the PD-1-PD-L1 interaction contributes to the progression of SCC by downregulation of antitumor responses. In fact, blocking PD-1 increased the percentage of CD8(+) and CD4(+) T cells, and the levels of interferon-γ in the tumor sites. Our results indicated involvement of PD-1(+) T cells in SCC development and in the modulation of the inflammatory immune response.


Assuntos
Anticorpos Monoclonais/farmacologia , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/prevenção & controle , Papiloma/imunologia , Papiloma/prevenção & controle , Receptor de Morte Celular Programada 1/antagonistas & inibidores , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Carcinoma de Células Escamosas/induzido quimicamente , Carcinoma de Células Escamosas/patologia , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Técnicas Imunoenzimáticas , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Papiloma/induzido quimicamente , Papiloma/patologia , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Acetato de Tetradecanoilforbol/toxicidade
20.
Clin Dev Immunol ; 2013: 806025, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762097

RESUMO

Dendritic cells (DCs) are essential for the maintenance of homeostasis in the organism, and they do that by modulating lymphocyte priming, expansion, and response patterns according to signals they receive from the environment. The induction of suppressive lymphocytes by DCs is essential to hinder the development of autoimmune diseases but can be reverted against homeostasis when in the context of neoplasia. In this setting, the induction of suppressive or regulatory T cells contributes to the establishment of a state of tolerance towards the tumor, allowing it to grow unchecked by an otherwise functional immune system. Besides affecting its local environment, tumor also has been described as potent sources of anti-inflammatory/suppressive factors, which may act systemically, generating defects in the differentiation and maturation of immune cells, far beyond the immediate vicinity of the tumor mass. Cytokines, as IL-10 and TGF-beta, as well as cell surface molecules like PD-L1 and ICOS seem to be significantly involved in the redirection of DCs towards tolerance induction, and recent data suggest that tumor cells may, indeed, modulate distinct DCs subpopulations through the involvement of these molecules. It is to be expected that the identification of such molecules should provide molecular targets for more effective immunotherapeutic approaches to cancer.


Assuntos
Antígeno B7-H1/imunologia , Células Dendríticas/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Interleucina-10/imunologia , Neoplasias/imunologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/imunologia , Antígeno B7-H1/genética , Comunicação Celular , Células Dendríticas/patologia , Regulação da Expressão Gênica , Humanos , Tolerância Imunológica , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Interleucina-10/genética , Ativação Linfocitária , Neoplasias/patologia , Transdução de Sinais , Linfócitos T Reguladores/patologia , Fator de Crescimento Transformador beta/genética , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA