Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(11)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38657630

RESUMO

Objective. We provide optimal particle split numbers for speeding up TOPAS Monte Carlo simulations of linear accelerator (linac) treatment heads while maintaining accuracy. In addition, we provide a new TOPAS physics module for simulating photoneutron production and transport.Approach.TOPAS simulation of a Siemens Oncor linac was used to determine the optimal number of splits for directional bremsstrahlung splitting as a function of the field size for 6 MV and 18 MV x-ray beams. The linac simulation was validated against published data of lateral dose profiles and percentage depth-dose curves (PDD) for the largest square field (40 cm side). In separate simulations, neutron particle split and the custom TOPAS physics module was used to generate and transport photoneutrons, called 'TsPhotoNeutron'. Verification of accuracy was performed by comparing simulations with published measurements of: (1) neutron yields as a function of beam energy for thick targets of Al, Cu, Ta, W, Pb and concrete; and (2) photoneutron energy spectrum at 40 cm laterally from the isocenter of the Oncor linac from an 18 MV beam with closed jaws and MLC.Main results.The optimal number of splits obtained for directional bremsstrahlung splitting enhanced the computational efficiency by two orders of magnitude. The efficiency decreased with increasing beam energy and field size. Calculated lateral profiles in the central region agreed within 1 mm/2% from measured data, PDD curves within 1 mm/1%. For the TOPAS physics module, at a split number of 146, the efficiency of computing photoneutron yields was enhanced by a factor of 27.6, whereas it improved the accuracy over existing Geant4 physics modules.Significance.This work provides simulation parameters and a new TOPAS physics module to improve the efficiency and accuracy of TOPAS simulations that involve photonuclear processes occurring in high-Zmaterials found in linac components, patient devices, and treatment rooms, as well as to explore new therapeutic modalities such as very-high energy electron therapy.


Assuntos
Método de Monte Carlo , Nêutrons , Aceleradores de Partículas , Fótons , Fótons/uso terapêutico , Fatores de Tempo , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Simulação por Computador , Humanos , Radioterapia/métodos
2.
Med Phys ; 48(1): 19-56, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32392626

RESUMO

BACKGROUND: Geant4 is a Monte Carlo code extensively used in medical physics for a wide range of applications, such as dosimetry, micro- and nanodosimetry, imaging, radiation protection, and nuclear medicine. Geant4 is continuously evolving, so it is crucial to have a system that benchmarks this Monte Carlo code for medical physics against reference data and to perform regression testing. AIMS: To respond to these needs, we developed G4-Med, a benchmarking and regression testing system of Geant4 for medical physics. MATERIALS AND METHODS: G4-Med currently includes 18 tests. They range from the benchmarking of fundamental physics quantities to the testing of Monte Carlo simulation setups typical of medical physics applications. Both electromagnetic and hadronic physics processes and models within the prebuilt Geant4 physics lists are tested. The tests included in G4-Med are executed on the CERN computing infrastructure via the use of the geant-val web application, developed at CERN for Geant4 testing. The physical observables can be compared to reference data for benchmarking and to results of previous Geant4 versions for regression testing purposes. RESULTS: This paper describes the tests included in G4-Med and shows the results derived from the benchmarking of Geant4 10.5 against reference data. DISCUSSION: Our results indicate that the Geant4 electromagnetic physics constructor G4EmStandardPhysics_option4 gives a good agreement with the reference data for all the tests. The QGSP_BIC_HP physics list provided an overall adequate description of the physics involved in hadron therapy, including proton and carbon ion therapy. New tests should be included in the next stage of the project to extend the benchmarking to other physical quantities and application scenarios of interest for medical physics. CONCLUSION: The results presented and discussed in this paper will aid users in tailoring physics lists to their particular application.


Assuntos
Benchmarking , Física , Radiometria , Simulação por Computador , Método de Monte Carlo
3.
Radiat Res ; 194(4): 351-362, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32857855

RESUMO

FLASH radiotherapy delivers a high dose (≥10 Gy) at a high rate (≥40 Gy/s). In this way, particles are delivered in pulses as short as a few nanoseconds. At that rate, intertrack reactions between chemical species produced within the same pulse may affect the heterogeneous chemistry stage of water radiolysis. This stochastic process suits the capabilities of the Monte Carlo method, which can model intertrack effects to aid in radiobiology research, including the design and interpretation of experiments. In this work, the TOPAS-nBio Monte Carlo track-structure code was expanded to allow simulations of intertrack effects in the chemical stage of water radiolysis. Simulation of the behavior of radiolytic yields over a long period of time (up to 50 s) was verified by simulating radiolysis in a Fricke dosimeter irradiated by 60Co γ rays. In addition, LET-dependent G values of protons delivered in single squared pulses of widths, 1 ns, 1 µs and 10 µs, were obtained and compared to simulations using no intertrack considerations. The Fricke simulation for the calculated G value of Fe3+ ion at 50 s was within 0.4% of the accepted value from ICRU Report 34. For LET-dependent G values at the end of the chemical stage, intertrack effects were significant at LET values below 2 keV/µm. Above 2 keV/µm the reaction kinetics remained limited locally within each track and thus, effects of intertrack reactions remained low. Therefore, when track structure simulations are used to investigate the biological damage of FLASH irradiation, these intertrack reactions should be considered. The TOPAS-nBio framework with the expansion to intertrack chemistry simulation provides a useful tool to assist in this task.


Assuntos
Simulação por Computador , Modelos Biológicos , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Radioisótopos de Cobalto , Elétrons , Compostos Ferrosos/efeitos da radiação , Raios gama , Humanos , Concentração de Íons de Hidrogênio , Transferência Linear de Energia , Método de Monte Carlo , Imagens de Fantasmas , Prótons , Radiometria/instrumentação , Processos Estocásticos , Ácidos Sulfúricos
4.
Radiat Res ; 191(2): 125-138, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30609382

RESUMO

The TOPAS Monte Carlo (MC) system is used in radiation therapy and medical imaging research, having played a significant role in making Monte Carlo simulations widely available for proton therapy related research. While TOPAS provides detailed simulations of patient scale properties, the fundamental unit of the biological response to radiation is a cell. Thus, our goal was to develop TOPAS-nBio, an extension of TOPAS dedicated to advance understanding of radiobiological effects at the (sub-)cellular, (i.e., the cellular and sub-cellular) scale. TOPAS-nBio was designed as a set of open source classes that extends TOPAS to model radiobiological experiments. TOPAS-nBio is based on and extends Geant4-DNA, which extends the Geant4 toolkit, the basis of TOPAS, to include very low-energy interactions of particles down to vibrational energies, explicitly simulates every particle interaction (i.e., without using condensed histories) and propagates radiolysis products. To further facilitate the use of TOPAS-nBio, a graphical user interface was developed. TOPAS-nBio offers full track-structure Monte Carlo simulations, integration of chemical reactions within the first millisecond, an extensive catalogue of specialized cell geometries as well as sub-cellular structures such as DNA and mitochondria, and interfaces to mechanistic models of DNA repair kinetics. We compared TOPAS-nBio simulations to measured and published data of energy deposition patterns and chemical reaction rates (G values). Our simulations agreed well within the experimental uncertainties. Additionally, we expanded the chemical reactions and species provided in Geant4-DNA and developed a new method based on independent reaction times (IRT), including a total of 72 reactions classified into 6 types between neutral and charged species. Chemical stage simulations using IRT were a factor of 145 faster than with step-by-step tracking. Finally, we applied the geometric/chemical modeling to obtain initial yields of double-strand breaks (DSBs) in DNA fibers for proton irradiations of 3 and 50 MeV and compared the effect of including chemical reactions on the number and complexity of DSB induction. Over half of the DSBs were found to include chemical reactions with approximately 5% of DSBs caused only by chemical reactions. In conclusion, the TOPAS-nBio extension to the TOPAS MC application offers access to accurate and detailed multiscale simulations, from a macroscopic description of the radiation field to microscopic description of biological outcome for selected cells. TOPAS-nBio offers detailed physics and chemistry simulations of radiobiological experiments on cells simulating the initially induced damage and links to models of DNA repair kinetics.


Assuntos
Simulação por Computador , Radiobiologia/métodos , Gráficos por Computador , Diagnóstico por Imagem , Humanos , Transferência Linear de Energia , Método de Monte Carlo , Terapia com Prótons , Radioterapia , Interface Usuário-Computador
5.
Phys Med Biol ; 63(10): 105014, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29697057

RESUMO

Simulation of water radiolysis and the subsequent chemistry provides important information on the effect of ionizing radiation on biological material. The Geant4 Monte Carlo toolkit has added chemical processes via the Geant4-DNA project. The TOPAS tool simplifies the modeling of complex radiotherapy applications with Geant4 without requiring advanced computational skills, extending the pool of users. Thus, a new extension to TOPAS, TOPAS-nBio, is under development to facilitate the configuration of track-structure simulations as well as water radiolysis simulations with Geant4-DNA for radiobiological studies. In this work, radiolysis simulations were implemented in TOPAS-nBio. Users may now easily add chemical species and their reactions, and set parameters including branching ratios, dissociation schemes, diffusion coefficients, and reaction rates. In addition, parameters for the chemical stage were re-evaluated and updated from those used by default in Geant4-DNA to improve the accuracy of chemical yields. Simulation results of time-dependent and LET-dependent primary yields Gx (chemical species per 100 eV deposited) produced at neutral pH and 25 °C by short track-segments of charged particles were compared to published measurements. The LET range was 0.05-230 keV µm-1. The calculated Gx values for electrons satisfied the material balance equation within 0.3%, similar for protons albeit with long calculation time. A smaller geometry was used to speed up proton and alpha simulations, with an acceptable difference in the balance equation of 1.3%. Available experimental data of time-dependent G-values for [Formula: see text] agreed with simulated results within 7% ± 8% over the entire time range; for [Formula: see text] over the full time range within 3% ± 4%; for H2O2 from 49% ± 7% at earliest stages and 3% ± 12% at saturation. For the LET-dependent Gx, the mean ratios to the experimental data were 1.11 ± 0.98, 1.21 ± 1.11, 1.05 ± 0.52, 1.23 ± 0.59 and 1.49 ± 0.63 (1 standard deviation) for [Formula: see text], [Formula: see text], H2, H2O2 and [Formula: see text], respectively. In conclusion, radiolysis and subsequent chemistry with Geant4-DNA has been successfully incorporated in TOPAS-nBio. Results are in reasonable agreement with published measured and simulated data.


Assuntos
Simulação por Computador , DNA/química , Elétrons , Método de Monte Carlo , Imagens de Fantasmas , Radiólise de Impulso , Radiobiologia/métodos , Fenômenos Químicos , Humanos , Transferência Linear de Energia , Água
6.
Phys Med Biol ; 60(13): 5037-52, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26061583

RESUMO

The aim of this work was to develop a framework for modeling organ effects within TOPAS (TOol for PArticle Simulation), a wrapper of the Geant4 Monte Carlo toolkit that facilitates particle therapy simulation. The DICOM interface for TOPAS was extended to permit contour input, used to assign voxels to organs. The following dose response models were implemented: The Lyman-Kutcher-Burman model, the critical element model, the population based critical volume model, the parallel-serial model, a sigmoid-based model of Niemierko for normal tissue complication probability and tumor control probability (TCP), and a Poisson-based model for TCP. The framework allows easy manipulation of the parameters of these models and the implementation of other models. As part of the verification, results for the parallel-serial and Poisson model for x-ray irradiation of a water phantom were compared to data from the AAPM Task Group 166. When using the task group dose-volume histograms (DVHs), results were found to be sensitive to the number of points in the DVH, with differences up to 2.4%, some of which are attributable to differences between the implemented models. New results are given with the point spacing specified. When using Monte Carlo calculations with TOPAS, despite the relatively good match to the published DVH's, differences up to 9% were found for the parallel-serial model (for a maximum DVH difference of 2%) and up to 0.5% for the Poisson model (for a maximum DVH difference of 0.5%). However, differences of 74.5% (in Rectangle1), 34.8% (in PTV) and 52.1% (in Triangle) for the critical element, critical volume and the sigmoid-based models were found respectively. We propose a new benchmark for verification of organ effect models in proton therapy. The benchmark consists of customized structures in the spread out Bragg peak plateau, normal tissue, tumor, penumbra and in the distal region. The DVH's, DVH point spacing, and results of the organ effect models are provided. The models were used to calculate dose response for a Head and Neck patient to demonstrate functionality of the new framework and indicate the degree of variability between the models in proton therapy.


Assuntos
Terapia com Prótons/métodos , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Software , Benchmarking , Determinação de Ponto Final , Método de Monte Carlo , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA