Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067603

RESUMO

Nanoencapsulation of native potato bioactive compounds by spray-drying improves their stability and bioavailability. The joint effect of the inlet temperature and the ratio of the encapsulant (quinoa starch/gum arabic) on the properties of the nanocapsules is unknown. The purpose of this study was to determine the best conditions for the nanoencapsulation of these compounds. The effects of two inlet temperatures (96 and 116 °C) and two ratios of the encapsulant (15 and 25% w/v) were evaluated using a factorial design during the spray-drying of native potato phenolic extracts. During the study, measurements of phenolic compounds, flavonoids, anthocyanins, antioxidant capacity, and various physical and structural properties were carried out. Higher inlet temperatures increased bioactive compounds and antioxidant capacity. However, a higher concentration of the encapsulant caused the dilution of polyphenols and anthocyanins. Instrumental analyses confirmed the effective encapsulation of the nuclei in the wall materials. Both factors, inlet temperature, and the encapsulant ratio, reduced the nanocapsules' humidity and water activity. Finally, the ideal conditions for the nanoencapsulation of native potato bioactive compounds were determined to be an inlet temperature of 116 °C and an encapsulant ratio of 15% w/v. The nanocapsules obtained show potential for application in the food industry.


Assuntos
Chenopodium quinoa , Nanocápsulas , Solanum tuberosum , Amido , Antioxidantes/química , Goma Arábica/química , Antocianinas/análise , Temperatura , Baías , Fenóis/análise
2.
Polymers (Basel) ; 15(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37836034

RESUMO

Iron deficiency leads to ferropenic anemia in humans. This study aimed to encapsulate iron-rich ovine and bovine erythrocytes using tara gum and native potato starch as matrices. Solutions containing 20% erythrocytes and different proportions of encapsulants (5, 10, and 20%) were used, followed by spray drying at 120 and 140 °C. Iron content in erythrocytes ranged between 2.24 and 2.52 mg of Fe/g; microcapsules ranged from 1.54 to 2.02 mg of Fe/g. Yields varied from 50.55 to 63.40%, and temperature and encapsulant proportion affected moisture and water activity. Various red hues, sizes, and shapes were observed in the microcapsules. SEM-EDS analysis revealed the surface presence of iron in microcapsules with openings on their exterior, along with a negative zeta potential. Thermal and infrared analyses confirmed core encapsulation within the matrices. Iron release varied between 92.30 and 93.13% at 120 min. Finally, the most effective treatments were those with higher encapsulant percentages and dried at elevated temperatures, which could enable their utilization in functional food fortification to combat anemia in developing countries.

3.
Foods ; 11(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37430903

RESUMO

Propolis is a substance with significant anti-inflammatory, anticancer, and antiviral activity, which could be used more efficiently at the nano level as an additive in the food industry. The aim was to obtain and characterize nanoencapsulated multi-floral propolis from the agro-ecological region of Apurimac, Peru. For nanoencapsulation, 5% ethanolic extracts propolis with 0.3% gum arabic and 30% maltodextrin were prepared. Then, the mixtures were dried by nano spraying at 120 °C using the smallest nebulizer. The flavonoid content was between 1.81 and 6.66 mg quercetin/g, the phenolic compounds were between 1.76 and 6.13 mg GAE/g, and a high antioxidant capacity was observed. The results of moisture, water activity, bulk density, color, hygroscopicity, solubility, yield, and encapsulation efficiency were typical of the nano spray drying process. The total organic carbon content was around 24%, heterogeneous spherical particles were observed at nanometer level (between 11.1 and 562.6 nm), with different behaviors in colloidal solution, the thermal gravimetric properties were similar in all the encapsulates, the FTIR and EDS analysis confirmed the encapsulation and the X-ray diffraction showed amorphous characteristics in the obtained material; stability and phenolic compound release studies indicated high values of 8.25-12.50 mg GAE/g between 8 and 12 h, the principal component analysis confirmed that the flora, altitude, and climate of the propolis location influenced the content of bioactive compounds, antioxidant capacity, and other properties studied. The nanoencapsulate from the district of Huancaray was the one with the best results, allowing its future use as a natural ingredient in functional foods. Nevertheless, technological, sensory, and economic studies should still be carried out.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA