Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
PLoS One ; 19(4): e0298465, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38640116

RESUMO

Lymphangiogenesis is induced by local pro-lymphatic growth factors and bone marrow (BM)-derived myeloid-lymphatic endothelial cell progenitors (M-LECP). We previously showed that M-LECP play a significant role in lymphangiogenesis and lymph node metastasis in clinical breast cancer (BC) and experimental BC models. We also showed that differentiation of mouse and human M-LECP can be induced through sequential activation of colony stimulating factor-1 (CSF-1) and Toll-like receptor-4 (TLR4) pathways. This treatment activates the autocrine interleukin-10 (IL-10) pathway that, in turn, induces myeloid immunosuppressive M2 phenotype along with lymphatic-specific proteins. Because IL-10 is implicated in differentiation of numerous lineages, we sought to determine whether this pathway specifically promotes the lymphatic phenotype or multipotent progenitors that can give rise to M-LECP among other lineages. Analyses of BM cells activated either by CSF-1/TLR4 ligands in vitro or orthotopic breast tumors in vivo showed expansion of stem/progenitor population and coincident upregulation of markers for at least four lineages including M2-macrophage, lymphatic endothelial, erythroid, and T-cells. Induction of cell plasticity and multipotency was IL-10 dependent as indicated by significant reduction of stem cell markers and those for multiple lineages in differentiated cells treated with anti-IL-10 receptor (IL-10R) antibody or derived from IL-10R knockout mice. However, multipotent CD11b+/Lyve-1+/Ter-119+/CD3e+ progenitors detected in BM appeared to split into a predominant myeloid-lymphatic fraction and minor subsets expressing erythroid and T-cell markers upon establishing tumor residence. Each sub-population was detected at a distinct intratumoral site. This study provides direct evidence for differences in maturation status between the BM progenitors and those reaching tumor destination. The study results suggest preferential tumor bias towards expansion of myeloid-lymphatic cells while underscoring the role of IL-10 in early BM production of multipotent progenitors that give rise to both hematopoietic and endothelial lineages.


Assuntos
Interleucina-10 , Neoplasias , Células-Tronco Neoplásicas , Microambiente Tumoral , Animais , Humanos , Camundongos , Células da Medula Óssea/patologia , Diferenciação Celular , Células Cultivadas , Interleucina-10/metabolismo , Fator Estimulador de Colônias de Macrófagos , Neoplasias/patologia , Fenótipo , Receptor 4 Toll-Like , Células-Tronco Multipotentes/metabolismo , Linfangiogênese , Células Mieloides/metabolismo , Células Mieloides/patologia , Células-Tronco Neoplásicas/metabolismo
2.
Cell Mol Life Sci ; 79(9): 478, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948813

RESUMO

Melanoma is the most aggressive among all types of skin cancers. The current strategies against melanoma utilize BRAFV600E, as a focal point for targeted therapy. However, therapy resistance developed in melanoma patients against the conventional anti-melanoma drugs hinders the ultimate benefits of targeted therapies. A major mechanism by which melanoma cells attain therapy resistance is via the activation of microphthalmia-associated transcription factor-M (MITF-M), the key transcription factor and oncogene aiding the survival of melanoma cells. We demonstrate that tryptanthrin (Tpn), an indole quinazoline alkaloid, which we isolated and characterized from Wrightia tinctoria, exhibits remarkable anti-tumor activity towards human melanoma through the down-regulation of MITF-M. Microarray analysis of Tpn-treated melanoma cells followed by a STRING protein association network analysis revealed that differential expression of genes in melanoma converges at MITF-M. Furthermore, in vitro and in vivo studies conducted using melanoma cells with differential MITF-M expression status, endogenously or ectopically, demonstrated that the anti-melanoma activity of Tpn is decisively contingent on its efficacy in down-regulating MITF-M expression. Tpn potentiates the degradation of MITF-M via the modulation of MEK1/2-ERK1/2-MITF-M signaling cascades. Murine models demonstrate the efficacy of Tpn in attenuating the migration and metastasis of melanoma cells, while remaining pharmacologically safe. In addition, Tpn suppresses the expression of mutated BRAFV600E and inhibits Casein Kinase 2α, a pro-survival enzyme that regulates ERK1/2 homeostasis in many tumor types, including melanoma. Together, we point to a promising anti-melanoma drug in Tpn, by virtue of its attributes to impede melanoma invasion and metastasis by attenuating MITF-M.


Assuntos
Melanoma , Fator de Transcrição Associado à Microftalmia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Melanoma/genética , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Quinazolinas
3.
Biomolecules ; 12(6)2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35740948

RESUMO

Reactive oxygen species (ROS) can be beneficial or harmful in health and disease. While low levels of ROS serve as signaling molecules to regulate vascular tone and the growth and proliferation of endothelial cells, elevated levels of ROS contribute to numerous pathologies, such as endothelial dysfunctions, colon cancer, and fibrosis. ROS and their cellular sources have been extensively studied as potential targets for clinical intervention. Whereas various ROS sources are important for different pathologies, four NADPH oxidases (NOX1, NOX2, NOX4, and NOX5) play a prominent role in homeostasis and disease. NOX1-generated ROS have been implicated in hypertension, suggesting that inhibition of NOX1 may be a promising therapeutic approach. NOX2 and NOX4 oxidases are of specific interest due to their role in producing extra- and intracellular hydrogen peroxide (H2O2). NOX4-released hydrogen peroxide activates NOX2, which in turn stimulates the release of mitochondrial ROS resulting in ROS-induced ROS release (RIRR) signaling. Increased ROS production from NOX5 contributes to atherosclerosis. This review aims to summarize recent findings on NOX enzymes and clinical trials inhibiting NADPH oxidases to target pathologies including diabetes, idiopathic pulmonary fibrosis (IPF), and primary biliary cholangitis (PBC).


Assuntos
Hipertensão , NADPH Oxidases , Células Endoteliais , Humanos , Peróxido de Hidrogênio , NADPH Oxidases/antagonistas & inibidores , Espécies Reativas de Oxigênio
4.
Stem Cells Dev ; 31(11-12): 322-333, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35442077

RESUMO

Myeloid-lymphatic endothelial cell progenitors (M-LECP) are a subset of bone marrow (BM)-derived cells characterized by expression of M2-type macrophage markers. We previously showed significant contribution of M-LECP to tumor lymphatic formation and metastasis in human clinical breast tumors and corresponding mouse models. Since M2 type is induced in macrophages by immunosuppressive Th2 cytokines IL-4, IL-13, and IL-10, we hypothesized that these factors might promote pro-lymphatic specification of M-LECP during their differentiation from BM myeloid precursors. To test this hypothesis, we analyzed expression of Th2 cytokines and their receptors in mouse BM cells under conditions leading to M-LECP differentiation, namely, CSF-1 treatment followed by activation of TLR4. We found that under these conditions, all three Th2 receptors were strongly upregulated in >95% of the cells that also secrete endogenous IL-10, but not IL-4 or IL-13 ligands. However, addition of any of the Th2 factors to CSF-1 primed cells significantly increased generation of myeloid-lymphatic progenitors as indicated by co-induction of lymphatic-specific (eg, Lyve-1, integrin-a9, collectin-12, and stabilin-1) and M2-type markers (eg, CD163, CD204, CD206, and PD-L1). Antibody-mediated blockade of either IL-10 receptor (IL-10R) or IL-10 ligand significantly reduced both immunosuppressive and lymphatic phenotypes. Moreover, tumor-recruited Lyve-1+ lymphatic progenitors in vivo expressed all Th2 receptors as well as corresponding ligands, including IL-4 and IL-13, which were absent in BM cells. This study presents original evidence for the significant role of Th2 cytokines in co-development of immunosuppressive and lymphatic phenotypes in tumor-recruited M2-type myeloid cells. Progenitor-mediated increase in lymphatic vessels can enhance immunosuppression by physical removal of stimulatory immune cells. Thus, targeting Th2 pathways might simultaneously relieve immunosuppression and inhibit differentiation of pro-lymphatic progenitors that ultimately promote tumor spread.


Assuntos
Vasos Linfáticos , Neoplasias , Células Th2 , Animais , Medula Óssea/metabolismo , Diferenciação Celular , Citocinas , Interleucina-10 , Interleucina-13 , Interleucina-4/farmacologia , Ligantes , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Fator Estimulador de Colônias de Macrófagos , Camundongos , Neoplasias/patologia
5.
Oncotarget ; 11(26): 2571-2585, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32655841

RESUMO

Natural killer (NK) cells are classically associated with immune surveillance and destruction of tumor cells. Inconsistent with this function, NK cells are found in advanced human tumors including renal cell carcinoma (RCC). NK cells with non-classical phenotypes (CD56+CD16dim/neg; termed decidua NK (dNK) cells) accumulate at the maternal-fetal interface during embryo implantation. These dNK cells are poorly cytotoxic, proangiogenic, and facilitate placenta development. As similarities between embryo implantation and tumor growth exist, we tested the hypothesis that an analogous shift in NK cell phenotype and function occurs in RCC tumors. Our results show that peripheral NK (pNK) cells of RCC patients were uniformly CD56+CD16bright, but lacked full cytotoxic ability. By comparison, RCC tumor-infiltrated NK (TiNK) cells were significantly enriched for CD56+CD16dim-neg cells, a phenotype of dNK cells. Gene expression analysis revealed that angiogenic and inflammatory genes were significantly increased for RCC TiNK versus RCC pNK populations, with enrichment of genes in the hypoxia inducible factor (HIF) 1α pathway. Consistent with this finding, NK cells cultured under hypoxia demonstrated limited cytotoxicity capacity, but augmented production of vascular endothelial growth factor (VEGF). Finally, comparison of gene expression data for RCC TiNK and dNK cells revealed a shared transcriptional signature of genes with known roles in angiogenesis and immunosuppression. These studies confirm conversion of pNK cells to a dNK-like phenotype in RCC tumors. These characteristics are conceivably beneficial for placentation, but likely exploited to support early tumor growth and promote metastasis.

6.
Theranostics ; 10(12): 5368-5383, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373218

RESUMO

We report the impact of notch-DLL4-based hereditary vascular heterogeneities on the enhanced permeation and retention (EPR) effect and plasmonic photothermal therapy response in tumors. Methods: We generated two consomic rat strains with differing DLL4 expression on 3rd chromosome. These strains were based on immunocompromised Salt-sensitive or SSIL2Rγ- (DLL4-high) and SS.BN3IL2Rγ- (DLL4-low) rats with 3rd chromosome substituted from Brown Norway rat. We further constructed three novel SS.BN3IL2Rγ- congenic strains by introgressing varying segments of BN chromosome 3 into the parental SSIL2Rγ- strain to localize the role of SSIL2Rγ- DLL4 on tumor EPR effect with precision. We synthesized multimodal theranostic nanoparticles (TNPs) based on Au-nanorods which provide magnetic resonance imaging (MRI), X-ray, and optical contrasts to assess image guided PTT response and quantify host specific therapy response differences in tumors orthotopically xenografted in DLL4-high and -low strains. We tested recovery of therapy sensitivity of PTT resistant strains by employing anti-DLL4 conjugated TNPs in two triple negative breast cancer tumor xenografts. Results: Host strains with high DLL4 allele demonstrated slightly increased tumor nanoparticle uptake but consistently developed photothermal therapy resistance compared to tumors in host strains with low DLL4 allele. Tumor micro-environment with low DLL4 expression altered the geographic distribution of nanoparticles towards closer proximity with vasculature which improved efficacy of PTT in spite of lower overall TNP uptake. Targeting TNPs to tumor endothelium via anti-DLL4 antibody conjugation improved therapy sensitivity in high DLL4 allele hosts for two triple negative human breast cancer xenografts. Conclusions: Inherited DLL4 expression modulates EPR effects in tumors, and molecular targeting of endothelial DLL4 via nanoparticles is an effective personalized nanomedicine strategy.


Assuntos
Neoplasias da Mama/metabolismo , Nanomedicina/métodos , Nanopartículas/química , Terapia Fototérmica/métodos , Microambiente Tumoral/fisiologia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Ratos , Microambiente Tumoral/genética
7.
Adv Exp Med Biol ; 1234: 87-105, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32040857

RESUMO

Tumor lymphatics play a key role in cancer progression as they are solely responsible for transporting malignant cells to regional lymph nodes (LNs), a process that precedes and promotes systemic lethal spread. It is broadly accepted that tumor lymphatic sprouting is induced mainly by soluble factors derived from tumor-associated macrophages (TAMs) and malignant cells. However, emerging evidence strongly suggests that a subset of TAMs, myeloid-lymphatic endothelial cell progenitors (M-LECP), also contribute to the expansion of lymphatics through both secretion of paracrine factors and a self-autonomous mode. M-LECP are derived from bone marrow (BM) precursors of the monocyte-macrophage lineage and characterized by unique co-expression of markers identifying lymphatic endothelial cells (LEC), stem cells, M2-type macrophages, and myeloid-derived immunosuppressive cells. This review describes current evidence for the origin of M-LECP in the bone marrow, their recruitment tumors and intratumoral trafficking, similarities to other TAM subsets, and mechanisms promoting tumor lymphatics. We also describe M-LECP integration into preexisting lymphatic vessels and discuss potential mechanisms and significance of this event. We conclude that improved mechanistic understanding of M-LECP functions within the tumor environment may lead to new therapeutic approaches to suppress tumor lymphangiogenesis and metastasis to lymph nodes.


Assuntos
Células Endoteliais , Vasos Linfáticos , Microambiente Tumoral , Humanos , Linfangiogênese , Metástase Linfática
8.
Am J Pathol ; 189(11): 2269-2292, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31421071

RESUMO

Lymphatic metastasis is a high-impact prognostic factor for mortality of breast cancer (BC) patients, and it directly depends on tumor-associated lymphatic vessels. We previously reported that lipopolysaccharide-induced inflammatory lymphangiogenesis is strongly promoted by myeloid-derived lymphatic endothelial cell progenitors (M-LECPs) derived from the bone marrow (BM). As BC recruits massive numbers of provascular myeloid cells, we hypothesized that M-LECPs, within this recruited population, are specifically programmed to promote tumor lymphatics that increase lymph node metastasis. In support of this hypothesis, high levels of M-LECPs were found in peripheral blood and tumor tissues of BC patients. Moreover, the density of M-LECPs and lymphatic vessels positive for myeloid marker proteins strongly correlated with patient node status. It was also established that tumor M-LECPs coexpress lymphatic-specific, stem/progenitor and M2-type macrophage markers that indicate their BM hematopoietic-myeloid origin and distinguish them from mature lymphatic endothelial cells, tumor-infiltrating lymphoid cells, and tissue-resident macrophages. Using four orthotopic BC models, we show that mouse M-LECPs are similarly recruited to tumors and integrate into preexisting lymphatics. Finally, we demonstrate that adoptive transfer of in vitro differentiated M-LECPs, but not naïve or nondifferentiated BM cells, significantly increased metastatic burden in ipsilateral lymph nodes. These data support a causative role of BC-induced lymphatic progenitors in tumor lymphangiogenesis and suggest molecular targets for their inhibition.


Assuntos
Neoplasias da Mama/patologia , Células Progenitoras Endoteliais/fisiologia , Endotélio Linfático/patologia , Células Mieloides/fisiologia , Animais , Células da Medula Óssea/fisiologia , Linhagem Celular Tumoral , Feminino , Humanos , Linfangiogênese/fisiologia , Metástase Linfática , Vasos Linfáticos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos SCID
9.
Breast Cancer Res Treat ; 177(1): 77-91, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31165373

RESUMO

PURPOSE: Understanding the molecular mediators of breast cancer survival is critical for accurate disease prognosis and improving therapies. Here, we identified Neuronatin (NNAT) as a novel antiproliferative modifier of estrogen receptor-alpha (ER+) breast cancer. EXPERIMENTAL DESIGN: Genomic regions harboring breast cancer modifiers were identified by congenic mapping in a rat model of carcinogen-induced mammary cancer. Tumors from susceptible and resistant congenics were analyzed by RNAseq to identify candidate genes. Candidates were prioritized by correlation with outcome, using a consensus of three breast cancer patient cohorts. NNAT was transgenically expressed in ER+ breast cancer lines (T47D and ZR75), followed by transcriptomic and phenotypic characterization. RESULTS: We identified a region on rat chromosome 3 (142-178 Mb) that modified mammary tumor incidence. RNAseq of the mammary tumors narrowed the candidate list to three differentially expressed genes: NNAT, SLC35C2, and FAM210B. NNAT mRNA and protein also correlated with survival in human breast cancer patients. Quantitative immunohistochemistry of NNAT protein revealed an inverse correlation with survival in a univariate analysis of patients with invasive ER+ breast cancer (training cohort: n = 444, HR = 0.62, p = 0.031; validation cohort: n = 430, HR = 0.48, p = 0.004). NNAT also held up as an independent predictor of survival after multivariable adjustment (HR = 0.64, p = 0.038). NNAT significantly reduced proliferation and migration of ER+ breast cancer cells, which coincided with altered expression of multiple related pathways. CONCLUSIONS: Collectively, these data implicate NNAT as a novel mediator of cell proliferation and migration, which correlates with decreased tumorigenic potential and prolonged patient survival.


Assuntos
Neoplasias da Mama/epidemiologia , Neoplasias da Mama/etiologia , Genes Modificadores , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Receptores de Estrogênio/genética , Animais , Biomarcadores Tumorais , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Incidência , Estimativa de Kaplan-Meier , Proteínas de Membrana/metabolismo , Estadiamento de Neoplasias , Proteínas do Tecido Nervoso/metabolismo , Avaliação de Resultados da Assistência ao Paciente , Prognóstico , Ratos , Receptores de Estrogênio/metabolismo , Transdução de Sinais
10.
Cancer Immunol Immunother ; 68(6): 991-997, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30997535

RESUMO

OBJECTIVES: Advanced age and female sex have been associated with worse outcomes in patients undergoing radical cystectomy for muscle-invasive bladder cancer. A reduced immune response has been implicated as a mechanism. The objective of our study was to analyze the expression patterns of various cellular proteins active in bladder cancer immune pathways, and assess the correlation between age, sex, and the expression of these immune markers. METHODS: We obtained surgical tissue samples from equally distributed male/female patients with/without lymph node metastasis who had undergone radical cystectomy for urothelial carcinoma (UC) of the bladder (n = 50). Immunohistochemistry (IHC) for CD3 (cluster of differentiation), CD4, CD8, CD56, LAG-3 (lymphocyte-activation gene), TIM-3 (T-cell immunoglobulin and mucin-domain), PD-1 (programmed death) and PD-L1 molecules was performed and scored by a single pathologist (high versus low). Spearman's correlation and Chi square tests investigated the association between age, sex, and IHC results. RESULTS: Mean age at surgery was 67 years (range 50-78 years); all patients were Caucasians. The following percent of patients scored high for a stain: 18% CD3, 10% CD4, 0% CD8, 0% CD56, 20% LAG-3, 4% TIM-3, 0% PD-1 and 0% PD-L1. There was no association between patients' age, sex, and the expression of any of the immune markers (p > 0.05 for all). CONCLUSIONS: The association between advanced age, female sex, and worse outcomes in bladder cancer may be independent of the immune pathways active in the disease that we examined in this study.


Assuntos
Biomarcadores Tumorais/biossíntese , Carcinoma de Células de Transição/cirurgia , Cistectomia/métodos , Linfócitos do Interstício Tumoral/metabolismo , Músculos/metabolismo , Neoplasias da Bexiga Urinária/cirurgia , Idoso , Antígenos CD/biossíntese , Antígeno B7-H1/biossíntese , Carcinoma de Células de Transição/imunologia , Carcinoma de Células de Transição/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Músculos/patologia , Receptor de Morte Celular Programada 1/biossíntese , Transdução de Sinais/imunologia , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/metabolismo
11.
Cancer Res ; 78(19): 5600-5617, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30111533

RESUMO

Tumor-associated macrophages (TAM) are causally associated with tumorigenesis as well as regulation of antitumor immune responses and have emerged as potential immunotherapeutic targets. Recent evidence suggests TAM phagocytose apoptotic tumor cells within the tumor microenvironment through efferocytosis in an immunologically silent manner, thus maintaining an immunosuppressed microenvironment. The signal transduction pathways coupling efferocytosis and immunosuppression are not well known. Neuropilin-2 (NRP2) is a member of the membrane-associated neuropilin family and has been reported in different immune cells but is poorly characterized. In this study, we show that NRP2 is expressed during macrophage differentiation, is induced by tumor cells, and regulates phagocytosis in macrophages. Furthermore, NRP2 in TAM promoted efferocytosis and facilitated tumor growth. Deletion of NRP2 from TAM impaired the clearance of apoptotic tumor cells and increased secondary necrosis within tumors. This resulted in a break in the immune tolerance and reinitiated antitumor immune responses, characterized by robust infiltration of CD8+ T and natural killer cells. This result suggests NRP2 may act as a molecular mediator that connects efferocytosis and immune suppression. Deletion of NRP2 in TAM downregulated several immunosuppressive and tumor-promoting genes and upregulated immunostimulatory genes in the myeloid compartment. Taken together, our study demonstrates that TAM-derived NRP2 plays a crucial role in tumor promotion through efferocytosis, opening the enticing option for the development of effective immunotherapy targeting TAM.Significance: Neuropilin-2 in macrophages promotes tumor growth by regulating efferocytosis of apoptotic tumor cells and orchestrating immune suppression.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/19/5600/F1.large.jpg Cancer Res; 78(19); 5600-17. ©2018 AACR.


Assuntos
Regulação Neoplásica da Expressão Gênica , Macrófagos/metabolismo , Neoplasias/imunologia , Neuropilina-2/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Sistema Imunitário , Terapia de Imunossupressão , Imunoterapia , Células Jurkat , Leucócitos Mononucleares/citologia , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Neoplasias/terapia , Fagocitose , Fagossomos/metabolismo , Transdução de Sinais , Transcriptoma , Microambiente Tumoral
12.
Breast Cancer Res Treat ; 165(1): 53-64, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28567545

RESUMO

PURPOSE: Multiple aspects of the tumor microenvironment (TME) impact breast cancer, yet the genetic modifiers of the TME are largely unknown, including those that modify tumor vascular formation and function. METHODS: To discover host TME modifiers, we developed a system called the Consomic/Congenic Xenograft Model (CXM). In CXM, human breast cancer cells are orthotopically implanted into genetically engineered consomic xenograft host strains that are derived from two parental strains with different susceptibilities to breast cancer. Because the genetic backgrounds of the xenograft host strains differ, whereas the inoculated tumor cells are the same, any phenotypic variation is due to TME-specific modifier(s) on the substituted chromosome (consomic) or subchromosomal region (congenic). Here, we assessed TME modifiers of growth, angiogenesis, and vascular function of tumors implanted in the SSIL2Rγ and SS.BN3IL2Rγ CXM strains. RESULTS: Breast cancer xenografts implanted in SS.BN3IL2Rγ (consomic) had significant tumor growth inhibition compared with SSIL2Rγ (parental control), despite a paradoxical increase in the density of blood vessels in the SS.BN3IL2Rγ tumors. We hypothesized that decreased growth of SS.BN3IL2Rγ tumors might be due to nonproductive angiogenesis. To test this possibility, SSIL2Rγ and SS.BN3IL2Rγ tumor vascular function was examined by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), micro-computed tomography (micro-CT), and ex vivo analysis of primary blood endothelial cells, all of which revealed altered vascular function in SS.BN3IL2Rγ tumors compared with SSIL2Rγ. Gene expression analysis also showed a dysregulated vascular signaling network in SS.BN3IL2Rγ tumors, among which DLL4 was differentially expressed and co-localized to a host TME modifier locus (Chr3: 95-131 Mb) that was identified by congenic mapping. CONCLUSIONS: Collectively, these data suggest that host genetic modifier(s) on RNO3 induce nonproductive angiogenesis that inhibits tumor growth through the DLL4 pathway.


Assuntos
Neovascularização Patológica , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral , Proteínas Adaptadoras de Transdução de Sinal , Animais , Animais Congênicos , Proteínas de Ligação ao Cálcio , Linhagem Celular Tumoral , Proliferação de Células , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Predisposição Genética para Doença , Xenoenxertos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Imageamento por Ressonância Magnética , Fenótipo , Ratos , Transdução de Sinais , Fatores de Tempo , Neoplasias de Mama Triplo Negativas/metabolismo , Carga Tumoral , Microtomografia por Raio-X
13.
PLoS One ; 12(6): e0179257, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28598999

RESUMO

BACKGROUND: Myeloid-derived lymphatic endothelial cells (M-LECP) are induced by inflammation and play an important role in adult lymphangiogenesis. However, the mechanisms driving M-LECP differentiation are currently unclear. We previously showed that activation of Toll-like receptor-4 (TLR4) induces myeloid-lymphatic transition (MLT) of immortalized mouse myeloid cells. Here the goals were to assess the potential of different TLR4 ligands to induce pro-lymphatic reprogramming in human and mouse primary myeloid cells and to identify transcriptional changes regulating this process. METHODOLOGY/PRINCIPAL FINDINGS: Human and mouse myeloid cells were reprogrammed to the lymphatic phenotype by TLR4 ligands including lipopolysaccharide (LPS), recombinant high mobility group box 1 protein (HMGB1), and paclitaxel. TLR4 induced similar MLT in cells from mice of different strains and immune status. Commonly induced genes were detected by transcriptional profiling in human and mouse myeloid cells from either immunocompetent or immunodeficient mice. Shared trends included: (1) novel expression of lymphatic-specific markers vascular endothelial growth factor receptor-3 (VEGFR-3), lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) and podoplanin (PDPN) largely absent prior to induction; (2) lack of notable changes in blood vessel-specific markers; (3) transient expression of VEGFR-3, but sustained increase of vascular endothelial growth factor-C (VEGF-C) and a variety of inflammatory cytokines; (4) dependency of VEGFR-3 upregulation and other LEC genes on NF-κB; and (5) novel expression of lymphatic-specific (e.g., PROX1) and stem/progenitor (e.g., E2F1) transcription factors known for their roles in adult and embryonic vascular formation. M-LECP generated by TLR4 ligands in vitro were functional in vivo as demonstrated by significantly increased lymphatic vessel density and lymphatic metastasis detected in orthotopic breast cancer models. CONCLUSIONS/SIGNIFICANCE: We established a novel TLR4-dependent protocol for in vitro production of functionally competent M-LECP from primary human or mouse myeloid cells and identified many potential regulators of this process. This information can be further exploited for research and therapeutic purposes.


Assuntos
Diferenciação Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Mieloides/citologia , Células Mieloides/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Biomarcadores , Antígeno CD11b/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Xenoenxertos , Humanos , Hospedeiro Imunocomprometido , Mediadores da Inflamação/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Linfangiogênese , Camundongos , Monócitos/metabolismo , Metástase Neoplásica , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo , Receptor 4 Toll-Like/genética
14.
J Leukoc Biol ; 102(2): 253-263, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28408396

RESUMO

Inflammation triggers an immune cell-driven program committed to restoring homeostasis to injured tissue. Central to this process is vasculature restoration, which includes both blood and lymphatic networks. Generation of new vessels or remodeling of existing vessels are also important steps in metastasis-the major cause of death for cancer patients. Although roles of the lymphatic system in regulation of inflammation and cancer metastasis are firmly established, the mechanisms underlying the formation of new lymphatic vessels remain a subject of debate. Until recently, generation of new lymphatics in adults was thought to occur exclusively through sprouting of existing vessels without help from recruited progenitors. However, emerging findings from clinical and experimental studies show that lymphoendothelial progenitors, particularly those derived from immature myeloid cells, play an important role in this process. This review summarizes current evidence for the existence and significant roles of myeloid-derived lymphatic endothelial cell progenitors (M-LECPs) in generation of new lymphatics. We describe specific markers of M-LECPs and discuss their biologic behavior in culture and in vivo, as well as currently known molecular mechanisms of myeloid-lymphatic transition (MLT). We also discuss the implications of M-LECPs for promoting adaptive immunity, as well as cancer metastasis. We conclude that improved mechanistic understanding of M-LECP differentiation and its role in adult lymphangiogenesis may lead to new therapeutic approaches for correcting lymphatic insufficiency or excessive formation of lymphatic vessels in human disorders.


Assuntos
Células Endoteliais/citologia , Linfangiogênese/imunologia , Vasos Linfáticos/citologia , Células Mieloides/citologia , Neovascularização Patológica/patologia , Animais , Diferenciação Celular/imunologia , Humanos , Inflamação/patologia , Neoplasias/patologia , Células-Tronco/citologia
16.
Sci Rep ; 5: 11107, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26061820

RESUMO

Wrightia tinctoria is a constituent of several ayurvedic preparations against skin disorders including psoriasis and herpes, though not yet has been explored for anticancer potential. Herein, for the first time, we report the significant anticancer properties of a semi-purified fraction, DW-F5, from the dichloromethane extract of W. tinctoria leaves against malignant melanoma. DW-F5 exhibited anti-melanoma activities, preventing metastasis and angiogenesis in NOD-SCID mice, while being non-toxic in vivo. The major pathways in melanoma signaling mediated through BRAF, WNT/ß-catenin and Akt-NF-κB converging in MITF-M, the master regulator of melanomagenesis, were inhibited by DW-F5, leading to complete abolition of MITF-M. Purification of DW-F5 led to the isolation of two cytotoxic components, one being tryptanthrin and the other being an unidentified aliphatic fraction. The overall study predicts Wrightia tinctoria as a candidate plant to be further explored for anticancer properties and DW-F5 as a forthcoming drug formulation to be evaluated as a chemotherapeutic agent against malignant melanoma.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apocynaceae/química , Extratos Vegetais/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Neovascularização Patológica/tratamento farmacológico , Folhas de Planta/química , Quinazolinas/química , Quinazolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cancer Res ; 75(12): 2405-10, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25998620

RESUMO

Tumor resistance to cytotoxic drugs is one of the main obstacles to successful cancer therapy. Emerging evidence suggests that chemoresistance is promoted by substances released from dead and damaged cells that activate the host repair program orchestrated by Toll-like receptor-4 (TLR4). TLR4 is often overexpressed in malignant and tumor-infiltrating immune cells. In addition to endogenous ligands released by therapy-induced tumor destruction, TLR4 is directly activated by paclitaxel, one of the most commonly used chemotherapeutic drugs against various human cancers. TLR4 activation promotes local and systemic inflammation, leading to induction of multiple circuits that create a regenerative environment favoring local recurrence and metastasis. Of particular importance is TLR4-mediated recruitment of endothelial progenitors derived from immature myeloid cells. These cells play a major role in rebuilding tumor-associated lymphatic and blood vessels, thereby promoting lymphatic and hematogenous metastasis. The latter is further enhanced by the premetastatic niche generated by mobilization of myeloid provascular cells to distant organs. This review summarizes the recent evidence demonstrating that paclitaxel and other clinically used anticancer drugs actively induce metastasis even while shrinking the primary tumor. Better understanding of the mechanisms underlying TLR4-dependent chemotherapy-driven metastasis might be the key to overcoming challenges of cancer eradication.


Assuntos
Neoplasias/metabolismo , Neoplasias/patologia , Receptor 4 Toll-Like/metabolismo , Animais , Resistencia a Medicamentos Antineoplásicos , Humanos , Metástase Neoplásica , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Neoplasias/tratamento farmacológico
18.
Immunol Cell Biol ; 93(5): 486-99, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25533286

RESUMO

Clinical studies using prognostic and predictive signatures have shown that an immune signal emanating from whole tumors reflects the level of immune cell infiltration--a high immune signal linked to improved outcome. Factors regulating immune cell trafficking to the tumor, however, are not known. Previous work has shown that expression of interferon regulatory factor 5 (IRF5), a critical immune regulator, is lost in ~80% of invasive ductal carcinomas examined. We postulated that IRF5-positive and -negative breast tumors would differentially regulate immune cell trafficking to the tumor. Using a focused tumor inflammatory array, differences in cytokine and chemokine expression were examined between IRF5-positive and -negative MDA-MB-231 cells grown in three-dimensional culture. A number of cytokines/chemokines were found to be dysregulated between cultures. CXCL13 was identified as a direct target of IRF5 resulting in the enhanced recruitment of B and T cells to IRF5-positive tumor-conditioned media. The ability of IRF5 to regulate mediators of cell migration was confirmed by enzyme-linked immunosorbent assay, chromatin immunoprecipitation assay, small interfering RNA knockdown and immunofluorescence staining of human breast tumor tissues. Analysis of primary immune cell subsets revealed that IRF5 specifically recruits CXCR5(+) B and T cells to the tumor; CXCR5 is the receptor for CXCL13. Analysis of primary breast tumor tissues revealed a significant correlation between IRF5 and CXCL13 expression providing clinical relevance to the study. Together, these data support that IRF5 directly regulates a network of genes that shapes a tumor immune response and may, in combination with CXCL13, serve as a novel prognostic marker for antitumor immunity.


Assuntos
Adenocarcinoma/imunologia , Linfócitos B/imunologia , Neoplasias da Mama/imunologia , Fatores Reguladores de Interferon/metabolismo , Linfócitos T/imunologia , Movimento Celular , Quimiocina CXCL13/genética , Quimiocina CXCL13/metabolismo , Meios de Cultivo Condicionados , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores Reguladores de Interferon/genética , Células MCF-7 , Receptores CXCR5/metabolismo , Transgenes/genética , Microambiente Tumoral
19.
Cancer Res ; 74(19): 5421-34, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25274031

RESUMO

Emerging evidence suggests that cytotoxic therapy may actually promote drug resistance and metastasis while inhibiting the growth of primary tumors. Work in preclinical models of breast cancer has shown that acquired chemoresistance to the widely used drug paclitaxel can be mediated by activation of the Toll-like receptor TLR4 in cancer cells. In this study, we determined the prometastatic effects of tumor-expressed TLR4 and paclitaxel therapy and investigated the mechanisms mediating these effects. While paclitaxel treatment was largely efficacious in inhibiting TLR4-negative tumors, it significantly increased the incidence and burden of pulmonary and lymphatic metastasis by TLR4-positive tumors. TLR4 activation by paclitaxel strongly increased the expression of inflammatory mediators, not only locally in the primary tumor microenvironment but also systemically in the blood, lymph nodes, spleen, bone marrow, and lungs. These proinflammatory changes promoted the outgrowth of Ly6C(+) and Ly6G(+) myeloid progenitor cells and their mobilization to tumors, where they increased blood vessel formation but not invasion of these vessels. In contrast, paclitaxel-mediated activation of TLR4-positive tumors induced de novo generation of deep intratumoral lymphatic vessels that were highly permissive to invasion by malignant cells. These results suggest that paclitaxel therapy of patients with TLR4-expressing tumors may activate systemic inflammatory circuits that promote angiogenesis, lymphangiogenesis, and metastasis, both at local sites and premetastatic niches where invasion occurs in distal organs. Taken together, our findings suggest that efforts to target TLR4 on tumor cells may simultaneously quell local and systemic inflammatory pathways that promote malignant progression, with implications for how to prevent tumor recurrence and the establishment of metastatic lesions, either during chemotherapy or after it is completed.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Metástase Neoplásica , Paclitaxel/uso terapêutico , Receptor 4 Toll-Like/fisiologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Inflamação/induzido quimicamente
20.
Cancer Res ; 74(22): 6419-29, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25172839

RESUMO

The majority of causative variants in familial breast cancer remain unknown. Of the known risk variants, most are tumor cell autonomous, and little attention has been paid yet to germline variants that may affect the tumor microenvironment. In this study, we developed a system called the Consomic Xenograft Model (CXM) to map germline variants that affect only the tumor microenvironment. In CXM, human breast cancer cells are orthotopically implanted into immunodeficient consomic strains and tumor metrics are quantified (e.g., growth, vasculogenesis, and metastasis). Because the strain backgrounds vary, whereas the malignant tumor cells do not, any observed changes in tumor progression are due to genetic differences in the nonmalignant microenvironment. Using CXM, we defined genetic variants on rat chromosome 3 that reduced relative tumor growth and hematogenous metastasis in the SS.BN3(IL2Rγ) consomic model compared with the SS(IL2Rγ) parental strain. Paradoxically, these effects occurred despite an increase in the density of tumor-associated blood vessels. In contrast, lymphatic vasculature and lymphogenous metastasis were unaffected by the SS.BN3(IL2Rγ) background. Through comparative mapping and whole-genome sequence analysis, we narrowed candidate variants on rat chromosome 3 to six genes with a priority for future analysis. Collectively, our results establish the utility of CXM to localize genetic variants affecting the tumor microenvironment that underlie differences in breast cancer risk.


Assuntos
Neoplasias da Mama/etiologia , Microambiente Tumoral , 9,10-Dimetil-1,2-benzantraceno , Animais , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Linfangiogênese , Masculino , Transplante de Neoplasias , Locos de Características Quantitativas , Ratos , Risco , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA