Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 50: 128335, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34425201

RESUMO

Fulvestrant is an FDA-approved drug with a dual mechanism of action (MOA), acting as a full antagonist and degrader of the estrogen receptor protein. A significant limitation of fulvestrant is the dosing regimen required for efficacy. Due to its high lipophilicity and poor pharmacokinetic profile, fulvestrant needs to be administered through intramuscular injections which leads to injection site soreness. This route of administration also limits the dose and target occupancy in patients. We envisioned a best-in-class molecule that would function with the same dual MOA as fulvestrant, but with improved physicochemical properties and would be orally bioavailable. Herein we report our progress toward that goal, resulting in a new lead GNE-502 which addressed some of the liabilities of our previously reported lead molecule GNE-149.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Neoplasias da Mama/tratamento farmacológico , Descoberta de Drogas , Receptores de Estrogênio/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Relação Dose-Resposta a Droga , Feminino , Humanos , Células MCF-7 , Camundongos , Estrutura Molecular , Conformação Proteica , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Med Chem ; 64(16): 11841-11856, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34251202

RESUMO

Breast cancer remains a leading cause of cancer death in women, representing a significant unmet medical need. Here, we disclose our discovery efforts culminating in a clinical candidate, 35 (GDC-9545 or giredestrant). 35 is an efficient and potent selective estrogen receptor degrader (SERD) and a full antagonist, which translates into better antiproliferation activity than known SERDs (1, 6, 7, and 9) across multiple cell lines. Fine-tuning the physiochemical properties enabled once daily oral dosing of 35 in preclinical species and humans. 35 exhibits low drug-drug interaction liability and demonstrates excellent in vitro and in vivo safety profiles. At low doses, 35 induces tumor regressions either as a single agent or in combination with a CDK4/6 inhibitor in an ESR1Y537S mutant PDX or a wild-type ERα tumor model. Currently, 35 is being evaluated in Phase III clinical trials.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Carbolinas/uso terapêutico , Antagonistas do Receptor de Estrogênio/uso terapêutico , Receptor alfa de Estrogênio/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Carbolinas/química , Carbolinas/farmacocinética , Cães , Antagonistas do Receptor de Estrogênio/química , Antagonistas do Receptor de Estrogênio/farmacocinética , Feminino , Humanos , Células MCF-7 , Macaca fascicularis , Camundongos , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
3.
ACS Med Chem Lett ; 11(6): 1342-1347, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32551022

RESUMO

Estrogen receptor alpha (ERα) is a well-validated drug target for ER-positive (ER+) breast cancer. Fulvestrant is FDA-approved to treat ER+ breast cancer and works through two mechanisms-as a full antagonist and selective estrogen receptor degrader (SERD)-but lacks oral bioavailability. Thus, we envisioned a "best-in-class" molecule with the same dual mechanisms as fulvestrant, but with significant oral exposure. Through lead optimization, we discovered a tool molecule 12 (GNE-149) with improved degradation and antiproliferative activity in both MCF7 and T47D cells. To illustrate the binding mode and key interactions of this scaffold with ERα, we obtained a cocrystal structure of 6 that showed ionic interaction of azetidine with Asp351 residue. Importantly, 12 showed favorable metabolic stability and good oral exposure. 12 exhibited antagonist effect in the uterus and demonstrated robust dose-dependent efficacy in xenograft models.

4.
Bioorg Med Chem Lett ; 29(7): 905-911, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30732944

RESUMO

Despite tremendous progress made in the understanding of the ERα signaling pathway and the approval of many therapeutic agents, ER+ breast cancer continues to be a leading cause of cancer death in women. We set out to discover compounds with a dual mechanism of action in which they not only compete with estradiol for binding with ERα, but also can induce the degradation of the ERα protein itself. We were attracted to the constrained chromenes containing a tetracyclic benzopyranobenzoxepine scaffold, which were reported as potent selective estrogen receptor modulators (SERMs). Incorporation of a fluoromethyl azetidine side chain yielded highly potent and efficacious selective estrogen receptor degraders (SERDs), such as 16aa and surprisingly, also its enantiomeric pair 16ab. Co-crystal structures of the enantiomeric pair 16aa and 16ab in complex with ERα revealed default (mimics the A-D rings of endogenous ligand estradiol) and core-flipped binding modes, rationalizing the equivalent potency observed for these enantiomers in the ERα degradation and MCF-7 anti-proliferation assays.


Assuntos
Antineoplásicos/farmacologia , Benzopiranos/farmacologia , Receptor alfa de Estrogênio/química , Antineoplásicos/química , Benzopiranos/química , Cristalização , Humanos , Células MCF-7 , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Transdução de Sinais , Relação Estrutura-Atividade
5.
J Pharm Sci ; 107(1): 327-333, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28989016

RESUMO

The oral bioavailability of a drug candidate is influenced by its permeability, metabolism, and physicochemical properties. Among the physicochemical properties, solubility and dissolution rate often are the most critical factors affecting the oral bioavailability of a compound. The increasing challenge for the pharmaceutical industry is to achieve reasonable oral bioavailability of poorly water-soluble drug candidates. G-F is a potent and selective B-Raf (rapidly accelerated fibrosarcoma) inhibitor with poor water solubility and moderate permeability, which resulted in an absorption-limited exposure in preclinical safety studies. The intrinsic solubility of G-F is 8 µg/mL (i.e., 0.0188 nM). In this study, pH adjustment combined with cosolvency, micellization, or complexation was applied as a technique to enhance the solubility of G-F. pH 9.5 and 4 buffers were selected to combine with the solubilization agents based on G-F's acidic pKa of 7.47. The solubilization power of each solubilization agent was determined based on the experimental data. The solubility G-F can be increased up to 4000-fold in a selected combination. The advantage of combination over individual solubilization agent was demonstrated. In this study, the understanding of the solubilization power of each solubilization agent played an important role in the formulation development of this development candidate.


Assuntos
Fibrossarcoma/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Química Farmacêutica/métodos , Humanos , Concentração de Íons de Hidrogênio , Permeabilidade , Solubilidade
6.
J Med Chem ; 60(22): 9162-9183, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-28892380

RESUMO

Inhibition of the bromodomain of the transcriptional regulator CBP/P300 is an especially interesting new therapeutic approach in oncology. We recently disclosed in vivo chemical tool 1 (GNE-272) for the bromodomain of CBP that was moderately potent and selective over BRD4(1). In pursuit of a more potent and selective CBP inhibitor, we used structure-based design. Constraining the aniline of 1 into a tetrahydroquinoline motif maintained potency and increased selectivity 2-fold. Structure-activity relationship studies coupled with further structure-based design targeting the LPF shelf, BC loop, and KAc regions allowed us to significantly increase potency and selectivity, resulting in the identification of non-CNS penetrant 19 (GNE-781, TR-FRET IC50 = 0.94 nM, BRET IC50 = 6.2 nM; BRD4(1) IC50 = 5100 nΜ) that maintained good in vivo PK properties in multiple species. Compound 19 displays antitumor activity in an AML tumor model and was also shown to decrease Foxp3 transcript levels in a dose dependent manner.


Assuntos
Antineoplásicos/farmacologia , Proteína de Ligação a CREB/antagonistas & inibidores , Pirazóis/farmacologia , Piridinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Proteína de Ligação a CREB/química , Cães , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Células HEK293 , Humanos , Macaca fascicularis , Masculino , Camundongos , Domínios Proteicos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Pirazóis/síntese química , Pirazóis/química , Pirazóis/farmacocinética , Piridinas/síntese química , Piridinas/química , Piridinas/farmacocinética , RNA/genética , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Bioorg Med Chem Lett ; 27(13): 2974-2981, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28512031

RESUMO

A high-throughput screening (HTS) of the Genentech/Roche library identified a novel, uncharged scaffold as a KDM5A inhibitor. Lacking insight into the binding mode, initial attempts to improve inhibitor potency failed to improve potency, and synthesis of analogs was further hampered by the presence of a C-C bond between the pyrrolidine and pyridine. Replacing this with a C-N bond significantly simplified synthesis, yielding pyrazole analog 35, of which we obtained a co-crystal structure with KDM5A. Using structure-based design approach, we identified 50 with improved biochemical, cell potency and reduced MW and lower lipophilicity (LogD) compared with the original hit. Furthermore, 50 showed lower clearance than 9 in mice. In combination with its remarkably low plasma protein binding (PPB) in mice (40%), oral dosing of 50 at 5mg/kg resulted in unbound Cmax ∼2-fold of its cell potency (PC9 H3K4Me3 0.96µM), meeting our criteria for an in vivo tool compound from a new scaffold.


Assuntos
Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Pirazóis/farmacologia , Proteína 2 de Ligação ao Retinoblastoma/antagonistas & inibidores , Administração Oral , Animais , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Humanos , Camundongos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirazóis/administração & dosagem , Pirazóis/química , Ratos , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Relação Estrutura-Atividade
8.
Nanoscale Res Lett ; 9(1): 156, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24685243

RESUMO

Paclitaxel is a common chemotherapeutic agent that is effective against various cancers. The poor aqueous solubility of paclitaxel necessitates a large percentage of Cremophor EL:ethanol (USP) in its commercial formulation which leads to hypersensitivity reactions in patients. We evaluate the use of a crystalline nanosuspension versus the USP formulation to deliver paclitaxel to tumor-bearing xenograft mice. Anti-tumor efficacy was assessed following intravenous administration of three 20 mg/kg doses of paclitaxel. Paclitaxel pharmacokinetics and tissue distribution were evaluated, and differences were observed between the two formulations. Plasma clearance and tissue to plasma ratio of mice that were dosed with the nanosuspension are approximately 33- and 11-fold higher compared to those of mice that were given the USP formulation. Despite a higher tumor to plasma ratio for the nanosuspension treatment group, absolute paclitaxel tumor exposure was higher for the USP group. Accordingly, a higher anti-tumor effect was observed in the xenograft mice that were dosed with the USP formulation (90% versus 42% tumor growth inhibition). This reduction in activity of nanoparticle formulation appeared to result from a slower than anticipated dissolution in vivo. This study illustrates a need for careful consideration of both dose and systemic solubility prior utilizing nanosuspension as a mode of intravenous delivery.

9.
Int J Pharm ; 454(1): 241-8, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23834830

RESUMO

It is well acknowledged that oral bioavailability of a drug candidate is often influenced by factors such as the permeability, physico-chemical properties, and metabolism of the drug. Among the physico-chemical properties, solubility and dissolution rate are considered the most critical factors affecting the oral bioavailability of a compound G-F is a potent and selective B-Raf inhibitor with poor solubility and adsorption is limited by solubility at high doses. In order to overcome this issue using a spray-dried amorphous dispersion (SDD) formulation was evaluated. A combination of theoretical solubility prediction and in vitro dissolution, were used to predict the in vivo exposure of G-F. The predicted value was found to have good agreement with the in vivo exposure from dosing the crystalline and amorphous form of G-F. In general, this combined approach demonstrated that the amorphous form of G-F offers an advantage over the crystalline form of G-F in terms of solubility; in vitro dissolution and in vivo absorption were predictable and consistent with the literature. This systemic approach provides a great value for compound development.


Assuntos
Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Administração Oral , Animais , Disponibilidade Biológica , Química Farmacêutica , Cristalização , Estudos de Viabilidade , Humanos , Absorção Intestinal , Modelos Biológicos , Modelos Químicos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Solubilidade , Tecnologia Farmacêutica/métodos , Temperatura
10.
AAPS PharmSciTech ; 13(2): 713-22, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22562615

RESUMO

It is well recognized that poor dissolution rate and solubility of drug candidates are key limiting factors for oral bioavailability. While numerous technologies have been developed to enhance solubility of the drug candidates, poor water solubility continuously remains a challenge for drug delivery. Among those technologies, amorphous solid dispersions (SD) have been successfully employed to enhance both dissolution rate and solubility of poorly water-soluble drugs. This research reports a high-throughput screening technology developed by utilizing a 96-well plate system to identify optimal drug load and polymer using a solvent casting approach. A minimal amount of drug was required to evaluate optimal drug load in three different polymers with respect to solubility improvement and solid-state stability of the amorphous drug-polymer system. Validation of this method was demonstrated with three marketed drugs as well as with one internal compound. Scale up of the internal compound SD by spray drying further confirmed the validity of this method, and its quality was comparable to a larger scale process. Here, we demonstrate that our system is highly efficient, cost-effective, and robust to evaluate the feasibility of spray drying technology to produce amorphous solid dispersions.


Assuntos
Portadores de Fármacos , Ensaios de Triagem em Larga Escala/instrumentação , Preparações Farmacêuticas/química , Polímeros/química , Tecnologia Farmacêutica/instrumentação , Acetaminofen/química , Celecoxib , Química Farmacêutica , Cristalização , Estabilidade de Medicamentos , Desenho de Equipamento , Griseofulvina/química , Ensaios de Triagem em Larga Escala/normas , Derivados da Hipromelose , Indometacina/química , Cinética , Metilcelulose/análogos & derivados , Metilcelulose/química , Miniaturização , Povidona/química , Pirazóis/química , Controle de Qualidade , Reprodutibilidade dos Testes , Solubilidade , Solventes/química , Sulfonamidas/química , Tecnologia Farmacêutica/métodos , Tecnologia Farmacêutica/normas , Vácuo , Água/química
11.
J Med Chem ; 55(6): 2869-81, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-22335519

RESUMO

Recent clinical data provided proof-of-concept for selective B-Raf inhibitors in treatment of B-Raf(V600E) mutant melanoma. Pyrazolopyridine-type B-Raf inhibitors previously described by the authors are potent and selective but exhibit low solubility requiring the use of amorphous dispersion-based formulation for achieving efficacious drug exposures. Through structure-based design, we discovered a new class of highly potent aminopyrimidine-based B-Raf inhibitors with improved solubility and pharmacokinetic profiles. The hinge binding moiety possesses a basic center imparting high solubility at gastric pH, addressing the dissolution limitation observed with our previous series. In our search for an optimal linker-hinge binding moiety system, amide-linked thieno[3,2-d]pyrimidine analogues 32 and 35 (G945), molecules with desirable physicochemical properties, emerged as lead compounds with strong efficacy in a B-Raf(V600E) mutant mouse xenograft model. Synthesis, SAR, lead selection, and evaluation of key compounds in animal studies will be described.


Assuntos
Aminopiridinas/síntese química , Antineoplásicos/síntese química , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Aminopiridinas/farmacocinética , Aminopiridinas/farmacologia , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Camundongos , Modelos Moleculares , Estrutura Molecular , Transplante de Neoplasias , Quinazolinas/síntese química , Quinazolinas/farmacocinética , Quinazolinas/farmacologia , Ratos , Solubilidade , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/farmacocinética , Tiofenos/farmacologia , Transplante Heterólogo
12.
Bioorg Med Chem Lett ; 22(2): 912-5, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22209462

RESUMO

A single crystal was obtained of a lead B-Raf(V600E) inhibitor with low aqueous solubility. The X-ray crystal structure revealed hydrogen-bonded head-to-tail dimers formed by the pyrazolopyridine and sulfonamide groups of a pair of molecules. This observation suggested a medicinal chemistry strategy to disrupt crystal packing and reduce the high crystal lattice energy of alternative inhibitors. Both a bulkier group at the interface of the dimer and an out-of-plane substituent were required to decrease the compound's melting point and increase aqueous solubility. These substituents were selected based on previously developed structure-activity relationships so as to concurrently maintain good enzymatic and cellular activity against B-Raf(V600E).


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Pirazóis/farmacologia , Piridinas/farmacologia , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Pirazóis/síntese química , Pirazóis/química , Piridinas/síntese química , Piridinas/química , Solubilidade , Relação Estrutura-Atividade , Água/química
13.
Xenobiotica ; 41(12): 1076-87, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21864203

RESUMO

The objective of these studies were to determine the preclinical disposition of the two BRAF inhibitors, G-F and G-C, followed by pharmacokinetic (PK)-pharmacodynamic (PD) modelling to characterize the concentration-efficacy relationship of these compounds in the Colo205 mouse xenograft model. With G-F, the relationship of pERK inhibition to concentration was also characterized. Compounds G-F and G-C were administered to mice, rats and dogs and the pharmacokinetics of G-F and G-C was determined. In addition, using indirect response models the concentration-efficacy relationship was described. The clearance of G-F was low; 0.625 and 4.65 mL/min/kg in rat and dog respectively. Similarly, the clearance of G-C was low in rat and dog, 0.490 and 4.43 mL/min/kg, respectively. Both compounds displayed low volumes of distribution (0.140-0.267 L/kg), resulting in moderate half-lives across species (~2.5 to 4 h). Bioavailability was formulation dependent and decreased with increasing dose. Using the indirect response models, the KC(50) (50% K(max); maximal response) value for tumor growth inhibition for G-F and G-C were 84.5 and 19.2 µM, respectively. The IC(50) for pERK inhibition in Colo205 tumors by G-F was estimated to be 29.2 µM. High exposures of G-F and G-C were required for efficacy. Despite good PK properties of low CL and moderate half-life, limitations in obtaining exposures adequate for safety testing in rat and dog resulted in development challenges.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Modelos Biológicos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Animais , Área Sob a Curva , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/sangue , Neoplasias Colorretais/patologia , Cães , Feminino , Masculino , Camundongos , Inibidores de Proteínas Quinases/sangue , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Ratos , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto
14.
ACS Med Chem Lett ; 2(5): 342-7, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24900315

RESUMO

The V600E mutation of B-Raf kinase results in constitutive activation of the MAPK signaling pathway and is present in approximately 7% of all cancers. Using structure-based design, a novel series of pyrazolopyridine inhibitors of B-Raf(V600E) was developed. Optimization led to the identification of 3-methoxy pyrazolopyridines 17 and 19, potent, selective, and orally bioavailable agents that inhibited tumor growth in a mouse xenograft model driven by B-Raf(V600E) with no effect on body weight. On the basis of their in vivo efficacy and preliminary safety profiles, 17 and 19 were selected for further preclinical evaluation.

15.
J Med Chem ; 51(15): 4465-75, 2008 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-18630890

RESUMO

Aurora kinase inhibitors have attracted a great deal of interest as a new class of antimitotic agents. We report a novel class of Aurora inhibitors based on a pentacyclic scaffold. A prototype pentacyclic inhibitor 32 (AKI-001) derived from two early lead structures improves upon the best properties of each parent and compares favorably to a previously reported Aurora inhibitor, 39 (VX-680). The inhibitor exhibits low nanomolar potency against both Aurora A and Aurora B enzymes, excellent cellular potency (IC50 < 100 nM), and good oral bioavailability. Phenotypic cellular assays show that both Aurora A and Aurora B are inhibited at inhibitor concentrations sufficient to block proliferation. Importantly, the cellular activity translates to potent inhibition of tumor growth in vivo. An oral dose of 5 mg/kg QD is well tolerated and results in near stasis (92% TGI) in an HCT116 mouse xenograft model.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacocinética , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Administração Oral , Animais , Aurora Quinase A , Aurora Quinase B , Aurora Quinases , Benzimidazóis/síntese química , Benzimidazóis/química , Disponibilidade Biológica , Linhagem Celular Tumoral , Cristalografia por Raios X , Cães , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Humanos , Lactamas/química , Camundongos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/síntese química , Proteínas Serina-Treonina Quinases/metabolismo , Ratos
16.
J Med Chem ; 50(12): 2767-78, 2007 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-17488003

RESUMO

Heat shock protein 90 (Hsp90) is a molecular chaperone protein implicated in stabilizing the conformation and maintaining the function of many cell-signaling proteins. Many oncogenic proteins are more dependent on Hsp90 in maintaining their conformation, stability, and maturation than their normal counterparts. Furthermore, recent data show that Hsp90 exists in an activated form in malignant cells but in a latent inactive form in normal tissues, suggesting that inhibitors selective for the activated form could provide a high therapeutic index. Hence, Hsp90 is emerging as an exciting new target for the treatment of cancer. We now report on a novel series of 2-amino-6-halopurine Hsp90 inhibitors exemplified by 2-amino-6-chloro-9-(4-iodo-3,5-dimethylpyridin-2-ylmethyl)purine (30). These highly potent inhibitors (IC50 of 30 = 0.009 microM in a HER-2 degradation assay) also display excellent antiproliferative activity against various tumor cell lines (IC50 of 30 = 0.03 microM in MCF7 cells). Moreover, this class of inhibitors shows higher affinity for the activated form of Hsp90 compared to our earlier 8-sulfanylpurine Hsp90 inhibitor series. When administered orally to mice, these compounds exhibited potent tumor growth inhibition (>80%) in an N87 xenograft model, similar to that observed with 17-allylamino-17-desmethoxygeldanamycin (17-AAG), which is a compound currently in phase I/II clinical trials.


Assuntos
Adenina/análogos & derivados , Antineoplásicos/síntese química , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Purinas/síntese química , Piridinas/síntese química , Adenina/síntese química , Adenina/química , Adenina/farmacologia , Administração Oral , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Disponibilidade Biológica , Linhagem Celular Tumoral , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Purinas/química , Purinas/farmacologia , Piridinas/química , Piridinas/farmacologia , Receptor ErbB-2/metabolismo , Relação Estrutura-Atividade , Transplante Heterólogo
17.
J Med Chem ; 49(17): 5352-62, 2006 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-16913725

RESUMO

We report on the discovery of benzo- and pyridino- thiazolothiopurines as potent heat shock protein 90 inhibitors. The benzothiazole moiety is exceptionally sensitive to substitutions on the aromatic ring with a 7'-substituent essential for activity. Some of these compounds exhibit low nanomolar inhibition activity in a Her-2 degradation assay (28-150 nM), good aqueous solubility, and oral bioavailability profiles in mice. In vivo efficacy experiments demonstrate that compounds of this class inhibit tumor growth in an N87 human colon cancer xenograft model via oral administration as shown with compound 37 (8-(7-chlorobenzothiazol-2-ylsulfanyl)-9-(2-cyclopropylamino-ethyl)-9H- purin-6-ylamine).


Assuntos
Neoplasias da Mama/tratamento farmacológico , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Purinas/farmacologia , Compostos de Sulfidrila/química , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Nus , Estrutura Molecular , Purinas/administração & dosagem , Purinas/química , Estereoisomerismo , Relação Estrutura-Atividade , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Pharm Sci ; 94(2): 297-303, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15570598

RESUMO

This study investigates the solubilization of a potential anti-human immunodeficiency virus agent [PG-300995 or 2-(2-thiophenyl)-4-azabenzoimidazole] for oral administration. The intrinsic solubility of PG-300995 is 51 microg/mL. Multiple approaches including combinations of pH control and cosolvency, micellization, or complexation were used to improve the solubility of PG-300995. The combined techniques increased the solubility of both the unionized and ionized species. The solubility of the drug increased from 20 to 200 times depending on the pH and concentration of solubilization agents. The following formulations which contain the desired doses of 5 and 10 mg/mL were developed for oral administration. Formulation A: 10 mg/mL PG-300995 in 20% sulfobutyl ether-beta-cyclodextrin at pH 2; formulations B: 5 mg/mL PG-300995 in 10% sulfobutyl ether-beta-cyclodextrin at pH 2; formulation C: 5 mg/mL PG-300995 in 10% ethanol + 40% propylene glycol at pH 2. No precipitation was observed after series dilution of these three formulations with water or pH 2 buffers. These formulations are stable for at least 6 months after storing at room temperature and 37 degrees C.


Assuntos
Fármacos Anti-HIV/química , Benzimidazóis/química , Química Farmacêutica , HIV/efeitos dos fármacos , Soluções Tampão , Humanos , Concentração de Íons de Hidrogênio , Íons , Micelas , Estrutura Molecular , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA