Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Birth Defects Res ; 115(3): 348-356, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36367445

RESUMO

Achondroplasia is an autosomal disorder caused by point mutation in the gene encoding fibroblast growth factor receptor 3 (FGFR3) and resulting in gain of function. Recifercept is a potential disease modifying treatment for achondroplasia and functions as a decoy protein that competes for ligands of the mutated FGFR3. Recifercept is intended to restore normal bone growth by preventing the mutated FGFR3 from negative inhibitory signaling in pediatric patients with achondroplasia. Here we evaluated the potential effects of twice weekly administration of recifercept to juvenile cynomolgus monkeys (approximately 3-months of age at the initiation of dosing) for 6-months. No adverse effects were noted in this study, identifying the high dose as the no-observed-adverse-effect-level and supporting the use of recifercept in pediatric patients from birth. Considering that juvenile toxicity studies in nonhuman primates are not frequently conducted, and when they are conducted they typically utilize animals ≥9 months of age, this study demonstrates the feasibility of executing a juvenile toxicity study in very young monkeys prior to weaning.


Assuntos
Acondroplasia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos , Animais , Humanos , Criança , Lactente , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/farmacologia , Macaca fascicularis/metabolismo , Acondroplasia/tratamento farmacológico , Acondroplasia/genética , Acondroplasia/metabolismo , Desenvolvimento Ósseo , Osso e Ossos/metabolismo
2.
Acta Pharm Sin B ; 11(12): 3857-3868, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35024312

RESUMO

Drug-induced liver injury (DILI) is a leading reason for preclinical safety attrition and post-market drug withdrawals. Drug-induced mitochondrial toxicity has been shown to play an essential role in various forms of DILI, especially in idiosyncratic liver injury. This study examined liver injury reports submitted to the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) for drugs associated with hepatotoxicity via mitochondrial mechanisms compared with non-mitochondrial mechanisms of toxicity. The frequency of hepatotoxicity was determined at a group level and individual drug level. A reporting odds ratio (ROR) was calculated as the measure of effect. Between the two DILI groups, reports for DILI involving mitochondrial mechanisms of toxicity had a 1.43 (95% CI 1.42-1.45; P < 0.0001) times higher odds compared to drugs associated with non-mitochondrial mechanisms of toxicity. Antineoplastic, antiviral, analgesic, antibiotic, and antimycobacterial drugs were the top five drug classes with the highest ROR values. Although the top 20 drugs with the highest ROR values included drugs with both mitochondrial and non-mitochondrial injury mechanisms, the top four drugs (ROR values > 18: benzbromarone, troglitazone, isoniazid, rifampin) were associated with mitochondrial mechanisms of toxicity. The major demographic influence for DILI risk was also examined. There was a higher mean patient age among reports for drugs that were associated with mitochondrial mechanisms of toxicity [56.1 ± 18.33 (SD)] compared to non-mitochondrial mechanisms [48 ± 19.53 (SD)] (P < 0.0001), suggesting that age may play a role in susceptibility to DILI via mitochondrial mechanisms of toxicity. Univariate logistic regression analysis showed that reports of liver injury were 2.2 (odds ratio: 2.2, 95% CI 2.12-2.26) times more likely to be associated with older patient age, as compared with reports involving patients less than 65 years of age. Compared to males, female patients were 37% less likely (odds ratio: 0.63, 95% CI 0.61-0.64) to be subjects of liver injury reports for drugs associated with mitochondrial toxicity mechanisms. Given the higher proportion of severe liver injury reports among drugs associated with mitochondrial mechanisms of toxicity, it is essential to understand if a drug causes mitochondrial toxicity during preclinical drug development when drug design alternatives, more clinically relevant animal models, and better clinical biomarkers may provide a better translation of drug-induced mitochondrial toxicity risk assessment from animals to humans. Our findings from this study align with mitochondrial mechanisms of toxicity being an important cause of DILI, and this should be further investigated in real-world studies with robust designs.

3.
Mol Cancer Ther ; 19(10): 1970-1980, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32788207

RESUMO

The deubiquitinase USP7 regulates the levels of multiple proteins with roles in cancer progression and immune response. Thus, USP7 inhibition may decrease oncogene function, increase tumor suppressor function, and sensitize tumors to DNA-damaging agents. We have discovered a novel chemical series that potently and selectively inhibits USP7 in biochemical and cellular assays. Our inhibitors reduce the viability of multiple TP53 wild-type cell lines, including several hematologic cancer and MYCN-amplified neuroblastoma cell lines, as well as a subset of TP53-mutant cell lines in vitro Our work suggests that USP7 inhibitors upregulate transcription of genes normally silenced by the epigenetic repressor complex, polycomb repressive complex 2 (PRC2), and potentiate the activity of PIM and PI3K inhibitors as well as DNA-damaging agents. Furthermore, oral administration of USP7 inhibitors inhibits MM.1S (multiple myeloma; TP53 wild type) and H526 (small cell lung cancer; TP53 mutant) tumor growth in vivo Our work confirms that USP7 is a promising, pharmacologically tractable target for the treatment of cancer.


Assuntos
Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Modelos Moleculares
4.
J Med Chem ; 63(10): 5398-5420, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32302140

RESUMO

USP7 is a promising target for cancer therapy as its inhibition is expected to decrease function of oncogenes, increase tumor suppressor function, and enhance immune function. Using a structure-based drug design strategy, a new class of reversible USP7 inhibitors has been identified that is highly potent in biochemical and cellular assays and extremely selective for USP7 over other deubiquitinases. The succinimide was identified as a key potency-driving motif, forming two strong hydrogen bonds to the allosteric pocket of USP7. Redesign of an initial benzofuran-amide scaffold yielded a simplified ether series of inhibitors, utilizing acyclic conformational control to achieve proper amine placement. Further improvements were realized upon replacing the ether-linked amines with carbon-linked morpholines, a modification motivated by free energy perturbation (FEP+) calculations. This led to the discovery of compound 41, a highly potent, selective, and orally bioavailable USP7 inhibitor. In xenograft studies, compound 41 demonstrated tumor growth inhibition in both p53 wildtype and p53 mutant cancer cell lines, demonstrating that USP7 inhibitors can suppress tumor growth through multiple different pathways.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/química , Descoberta de Drogas/métodos , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores , Peptidase 7 Específica de Ubiquitina/química , Administração Oral , Animais , Linhagem Celular Tumoral , Cristalografia por Raios X/métodos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Estrutura Terciária de Proteína , Peptidase 7 Específica de Ubiquitina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
5.
Chem Res Toxicol ; 32(1): 156-167, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30525499

RESUMO

Mitochondrial toxicity has been shown to contribute to a variety of organ toxicities such as liver, cardiac, and kidney. In the past decades, two high-throughput applicable screening assays (isolated rat liver mitochondria; glucose-galactose grown HepG2 cells) to assess mitochondrial toxicity have been deployed in many pharmaceutical companies, and numerous publications have demonstrated its usefulness for mechanistic investigations. However, only two publications have demonstrated the utility of these screens as a predictor of human drug-induced liver injury. In the present study, we screened 73 hepatotoxicants, 46 cardiotoxicants, 49 nephrotoxicants, and 60 compounds not known to cause human organ toxicity for their effects on mitochondrial function(s) in the assays mentioned above. Predictive performance was evaluated using specificity and sensitivity of the assays for predicting organ toxicity. Our results show that the predictive performance of the mitochondrial assays are superior for hepatotoxicity as compared to cardiotoxicity and nephrotoxicity (sensitivity 63% vs 33% and 28% with similar specificity of 93%), when the analysis was done at 100* Cmax (drug concentration in human plasma level). We further explored the association of mitochondrial toxicity with physicochemical properties such as calculated log partition coefficient (cLogP), topological polar surface area, ionization status, and molecular weight of the drugs and found that cLogP was most significantly associated mitochondrial toxicity. Since these assays are amenable to higher throughput, we recommend that chemists use these assays to perform structure activity relationship early in the drug discovery process, when chemical matter is abundant. This assures that compounds that lack the propensity to cause mitochondrial dysfunction (and associated organ toxicity) will move forward into animals and humans.


Assuntos
Coração/efeitos dos fármacos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Preparações Farmacêuticas/análise , Animais , Físico-Química , Células Hep G2 , Humanos , Rim/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Curva ROC , Ratos
6.
Arch Toxicol ; 92(3): 1295-1310, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29167929

RESUMO

Human liver contains various oxidative and conjugative enzymes that can convert nontoxic parent compounds to toxic metabolites or, conversely, toxic parent compounds to nontoxic metabolites. Unlike primary hepatocytes, which contain myriad drug-metabolizing enzymes (DMEs), but are difficult to culture and maintain physiological levels of DMEs, immortalized hepatic cell lines used in predictive toxicity assays are easy to culture, but lack the ability to metabolize compounds. To address this limitation and predict metabolism-induced hepatotoxicity in high-throughput, we developed an advanced miniaturized three-dimensional (3D) cell culture array (DataChip 2.0) and an advanced metabolizing enzyme microarray (MetaChip 2.0). The DataChip is a functionalized micropillar chip that supports the Hep3B human hepatoma cell line in a 3D microarray format. The MetaChip is a microwell chip containing immobilized DMEs found in the human liver. As a proof of concept for generating compound metabolites in situ on the chip and rapidly assessing their toxicity, 22 model compounds were dispensed into the MetaChip and sandwiched with the DataChip. The IC50 values obtained from the chip platform were correlated with rat LD50 values, human C max values, and drug-induced liver injury categories to predict adverse drug reactions in vivo. As a result, the platform had 100% sensitivity, 86% specificity, and 93% overall predictivity at optimum cutoffs of IC50 and C max values. Therefore, the DataChip/MetaChip platform could be used as a high-throughput, early stage, microscale alternative to conventional in vitro multi-well plate platforms and provide a rapid and inexpensive assessment of metabolism-induced toxicity at early phases of drug development.


Assuntos
Técnicas de Cultura de Células/métodos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Enzimas/metabolismo , Análise Serial de Proteínas/métodos , Testes de Toxicidade/métodos , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Enzimas/análise , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Humanos , Concentração Inibidora 50 , Dispositivos Lab-On-A-Chip , Dose Letal Mediana , Neoplasias Hepáticas/patologia , Miniaturização , Análise Serial de Proteínas/instrumentação , Ratos , Sensibilidade e Especificidade , Testes de Toxicidade/instrumentação
7.
Toxicol In Vitro ; 45(Pt 1): 111-118, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28843493

RESUMO

As the number of cancer survivors continues to grow, awareness of long-term toxicities and impact on quality of life after chemotherapy treatment in cancer survivors has intensified. Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common side effects of modern chemotherapy. Animal models are used to study peripheral neuropathy and predict human risk; however, such models are labor-intensive and limited translatability between species has become a major challenge. Moreover, the mechanisms underlying CIPN have not been precisely determined and few human neuronal models to study CIPN exist. Here, we have developed a high-throughput drug-induced neurotoxicity screening model using human iPSC-derived peripheral-like neurons to study the effect of chemotherapy agents on neuronal health and morphology using high content imaging measurements (neurite length and neuronal cell viability). We utilized this model to test various classes of chemotherapeutic agents with known clinical liability to cause peripheral neuropathy such as platinum agents, taxanes, vinca alkaloids, proteasome inhibitors, and anti-angiogenic compounds. The model was sensitive to compounds that cause interference in microtubule dynamics, especially the taxane, epothilone, and vinca alkaloids. Conversely, the model was not sensitive to platinum and anti-angiogenic chemotherapeutics; compounds that are not reported to act directly on neuronal processes. In summary, we believe this model has utility for high-throughput screening and prediction of human risk for CIPN for novel chemotherapeutics.


Assuntos
Antineoplásicos/toxicidade , Células-Tronco Pluripotentes Induzidas , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Ensaios de Triagem em Larga Escala , Humanos , Neuritos/efeitos dos fármacos , Neurônios/fisiologia
8.
Bioorg Med Chem Lett ; 26(16): 4003-6, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27397500

RESUMO

Many adverse drug reactions are caused by the cytochrome P450 (CYP)-dependent activation of drugs into reactive metabolites. In order to reduce attrition due to metabolism-induced toxicity and to improve the safety of drug candidates, we developed a simple cell viability assay by combining a bioactivation system (human CYP3A4, CYP2D6 and CYP2C9) with Hep3B cells. We screened a series of drugs to explore structural motifs that may be responsible for CYP450-dependent activation caused by reactive metabolite formation, which highlighted specific liabilities regarding certain phenols and anilines.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Preparações Farmacêuticas/metabolismo , Trifosfato de Adenosina/metabolismo , Benzobromarona/análogos & derivados , Benzobromarona/metabolismo , Benzobromarona/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromanos/metabolismo , Cromanos/toxicidade , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Humanos , Tiazolidinedionas/metabolismo , Tiazolidinedionas/toxicidade , Troglitazona
9.
Toxicol Sci ; 130(1): 117-31, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22843568

RESUMO

Cardiotoxicity remains the number one reason for drug withdrawal from the market, and Food and Drug Administration issued black box warnings, thus demonstrating the need for more predictive preclinical safety screening, especially early in the drug discovery process when much chemical substrate is available. Whereas human-ether-a-go-go related gene screening has become routine to mitigate proarrhythmic risk, the development of in vitro assays predicting additional on- and off-target biochemical toxicities will benefit from cellular models exhibiting true cardiomyocyte characteristics such as native tissue-like mitochondrial activity. Human stem cell-derived tissue cells may provide such a model. This hypothesis was tested using a combination of flux analysis, gene and protein expression, and toxicity-profiling techniques to characterize mitochondrial function in induced pluripotent stem cell (iPSC) derived human cardiomyocytes in the presence of differing carbon sources over extended periods in cell culture. Functional analyses demonstrate that iPSC-derived cardiomyocytes are (1) capable of utilizing anaerobic or aerobic respiration depending upon the available carbon substrate and (2) bioenergetically closest to adult heart tissue cells when cultured in galactose or galactose supplemented with fatty acids. We utilized this model to test a variety of kinase inhibitors with known clinical cardiac liabilities for their potential toxicity toward these cells. We found that the kinase inhibitors showed a dose-dependent toxicity to iPSC cardiomyocytes grown in galactose and that oxygen consumption rates were significantly more affected than adenosine triphosphate production. Sorafenib was found to have the most effect, followed by sunitinib, dasatinib, imatinib, lapatinib, and nioltinib.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Xenobióticos/toxicidade , Diferenciação Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Ácidos Graxos/farmacologia , Galactose/farmacologia , Glucose/farmacologia , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Miócitos Cardíacos/fisiologia , Consumo de Oxigênio/efeitos dos fármacos , Preparações Farmacêuticas , Células-Tronco Pluripotentes/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Testes de Toxicidade
10.
Toxicol Sci ; 129(2): 346-62, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22700542

RESUMO

Fatty acids are an important source of energy. Excessive energy intake results in elevated levels of free fatty acids that are thought to be the pathogenic factors causing metabolic disorders such as dyslipidemia, obesity, insulin resistance, diabetes, and fatty liver. Underlying metabolic disorders have been suggested to be a predisposing factor for drug-induced liver injury. The steadily expanding population with metabolic disease may pose a higher risk for drug-induced toxicity. In order to understand the interaction of free fatty acids and drug-induced toxicity at the cellular level, we explored whether the saturated free fatty acid palmitate could modulate drug-induced cytotoxicity in HepG2 cells. A number of drugs known to induce hepatotoxicity in humans were selected to test this hypothesis. Drugs without reported hepatotoxicity were also tested to evaluate the specificity of the palmitate-induced effects. We demonstrate that palmitate, at sublethal concentrations, was able to potentiate the cytotoxicity and/or apoptosis induced by some but not all drugs tested. The palmitate and drug coincubation potentiated toxicity, which when combined with the plasma maximum concentration (C(max)), allowed us to identify idiosyncratic toxic drugs that were not flagged in previously deployed cytotoxicity assays. Our data suggest that treatment of cells with palmitate improves the sensitivity to detect compounds with risk of inducing idiosyncratic liver toxicity. Furthermore, this assay may be used to identify compounds that have higher safety risks in a population with metabolic syndrome.


Assuntos
Síndrome Metabólica/tratamento farmacológico , Ácido Palmítico/farmacologia , Sinergismo Farmacológico , Células Hep G2 , Humanos
11.
J Bioenerg Biomembr ; 44(4): 421-37, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22689143

RESUMO

High-throughput applicable screens for identifying drug-induced mitochondrial impairment are necessary in the pharmaceutical industry. Hence, we evaluated the XF96 Extracellular Flux Analyzer, a 96-well platform that measures changes in the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of cells. The sensitivity of the platform was bench-marked with known modulators of oxidative phosphorylation and glycolysis. Sixteen therapeutic agents were screened in HepG2 cells for mitochondrial effects. Four of these compounds, thiazolidinediones, were also tested in primary feline cardiomyocytes for cell-type specific effects. We show that the XF96 platform is a robust, sensitive system for analyzing drug-induced mitochondrial impairment in whole cells. We identified changes in cellular respiration and acidification upon addition of therapeutic agents reported to have a mitochondrial effect. Furthermore, we show that respiration and acidification changes upon addition of the thiazoldinediones were cell-type specific, with the rank order of mitochondrial impairment in whole cells being in accord with the known adverse effects of these drugs.


Assuntos
Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Animais , Gatos , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Glicólise/efeitos dos fármacos , Células Hep G2 , Humanos , Masculino , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/patologia , Fosforilação Oxidativa/efeitos dos fármacos
12.
Toxicol Appl Pharmacol ; 261(2): 172-80, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22521608

RESUMO

Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients.


Assuntos
Ciclosporina/toxicidade , Imunossupressores/toxicidade , Ácido Palmítico/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Células Hep G2 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA