Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
AJR Am J Roentgenol ; 211(2): 405-408, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29894219

RESUMO

OBJECTIVE: Recent well-publicized sentinel events have resulted in an appropriately heightened awareness of CT dose. Concern also exists regarding the potential of CT dose increasing the risk of cancer. Several professional societies, governmental and accreditation agencies, and CT vendors have responded to these concerns with campaigns, mandatory standards, and software enhancements. The objective of this article is to review such CT dose management efforts. CONCLUSION: Although CT dose awareness campaigns, mandatory standards, and software enhancements are well intentioned, their implementation is often suboptimal.


Assuntos
Física Médica/normas , Lesões por Radiação/prevenção & controle , Proteção Radiológica/normas , Radiometria/normas , Tomografia Computadorizada por Raios X/efeitos adversos , Tomografia Computadorizada por Raios X/normas , Relação Dose-Resposta à Radiação , Desenho de Equipamento , Segurança de Equipamentos , Humanos , Neoplasias Induzidas por Radiação/prevenção & controle , Doses de Radiação , Gestão de Riscos , Software
2.
Radiat Res ; 190(2): 133-141, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29781766

RESUMO

While computed tomography (CT) is now commonly used and considered to be clinically valuable, significant DNA double-strand breaks (γ-H2AX foci) in white blood cells from adult and pediatric CT patients have been frequently reported. In this study to determine whether γ-H2AX foci and X-ray-induced naked DNA damage are suppressed by administration of the PrC-210 radioprotector, human blood samples were irradiated in a CT scanner at 50-150 mGy with or without PrC-210, and γ-H2AX foci were scored. X-ray-induced naked DNA damage was also studied, and the DNA protective efficacy of PrC-210 was compared against 12 other common "antioxidants." PrC-210 reduced CT radiation-induced γ-H2AX foci in white blood cells to near background ( P < 0.0001) at radiation doses of 50-150 mGy. PrC-210 was most effective among the 13 "antioxidants" in reducing naked DNA X-ray damage, and its addition at 30 s before an •OH pulse reduced to background the •OH insult that otherwise induced >95% DNA damage. A systemic PrC-210 dose known to confer 100% survival in irradiated mice had no discernible effect on micro-CT image signal-to-noise ratio and CT image integrity. PrC-210 suppressed DNA damage to background or near background in each of these assay systems, thus supporting its development as a radioprotector for humans in multiple radiation exposure settings.


Assuntos
Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/efeitos da radiação , Dano ao DNA , Diaminas/farmacologia , Protetores contra Radiação/farmacologia , Compostos de Sulfidrila/farmacologia , Tomografia Computadorizada por Raios X/efeitos adversos , Animais , Células Sanguíneas/metabolismo , Relação Dose-Resposta a Droga , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Doses de Radiação , Fatores de Tempo
3.
J Appl Clin Med Phys ; 17(3): 452-466, 2016 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-27167276

RESUMO

When patient anatomy is positioned away from a CT scanner's isocenter, scans of limited diagnostic value may result. Yet in some cases, positioning of patient anatomy far from isocenter is unavoidable. This study examines the effect of posi-tion and reconstruction algorithm on image resolution achieved by a CT scanner operating in a high resolution (HR) scan mode which incorporates focal spot deflection and acquires an increased number of projections per rotation. Images of a metal bead contained in a phantom were acquired on a GE CT750 HD scanner with multiple reconstruction algorithms, in the normal and HR scan mode, and at two positions, scanner isocenter and 15 cm directly above isocenter. The images of the metal bead yielded two-dimensional point spread functions which were averaged along two perpendicular directions to yield line spread functions. Fourier transforms of the line spread functions yielded radial and azimuthal modulation transfer functions (MTFs). At isocenter, the radial and azimuthal MTFs were aver-aged. MTF improvement depended on image position and modulation direction. The results from a single algorithm, Edge, can be generalized to other algorithms. At isocenter, the 10% MTF cutoff was 14.4 cycles/cm in normal and HR mode. At 15 cm above isocenter, the 10% cutoff was 6.0 and 8.5 cycles/cm for the azimuthal and radial MTFs in normal mode. In HR mode, the azimuthal and radial MTF 10% cutoff was 8.3 and 10.3 cycles/cm. Our results indicate that the best image resolu-tion is achieved at scanner isocenter and that the azimuthal resolution degrades more significantly than the radial resolution. For the GE CT750 HD CT scanner, the resolution is significantly enhanced by the HR scan mode away from scanner isocenter, and the use of the HR scan mode has much more of an impact on image resolution away from isocenter than the choice of algorithm.


Assuntos
Algoritmos , Imagens de Fantasmas , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomógrafos Computadorizados , Tomografia Computadorizada por Raios X/métodos , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
4.
J Appl Clin Med Phys ; 16(2): 5023, 2015 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26103176

RESUMO

The purpose of this paper is to describe our experience with the AAPM Medical Physics Practice Guideline 1.a: "CT Protocol Management and Review Practice Guideline". Specifically, we will share how our institution's quality management system addresses the suggestions within the AAPM practice report. We feel this paper is needed as it was beyond the scope of the AAPM practice guideline to provide specific details on fulfilling individual guidelines. Our hope is that other institutions will be able to emulate some of our practices and that this article would encourage other types of centers (e.g., community hospitals) to share their methodology for approaching CT protocol optimization and quality control. Our institution had a functioning CT protocol optimization process, albeit informal, since we began using CT. Recently, we made our protocol development and validation process compliant with a number of the ISO 9001:2008 clauses and this required us to formalize the roles of the members of our CT protocol optimization team. We rely heavily on PACS-based IT solutions for acquiring radiologist feedback on the performance of our CT protocols and the performance of our CT scanners in terms of dose (scanner output) and the function of the automatic tube current modulation. Specific details on our quality management system covering both quality control and ongoing optimization have been provided. The roles of each CT protocol team member have been defined, and the critical role that IT solutions provides for the management of files and the monitoring of CT protocols has been reviewed. In addition, the invaluable role management provides by being a champion for the project has been explained; lack of a project champion will mitigate the efforts of a CT protocol optimization team. Meeting the guidelines set forth in the AAPM practice guideline was not inherently difficult, but did, in our case, require the cooperation of radiologists, technologists, physicists, IT, administrative staff, and hospital management. Some of the IT solutions presented in this paper are novel and currently unique to our institution.


Assuntos
Fidelidade a Diretrizes/organização & administração , Fidelidade a Diretrizes/normas , Hospitais Universitários , Guias de Prática Clínica como Assunto/normas , Garantia da Qualidade dos Cuidados de Saúde , Tomografia Computadorizada por Raios X/normas , Documentação/normas , Física Médica/normas , Humanos , Radioterapia (Especialidade)/normas
6.
J Am Coll Radiol ; 8(11): 756-61, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22051457

RESUMO

PURPOSE: CT radiation exposure has come under increasing scrutiny because of dramatically increased utilization. Multiphase CT studies (repeated scanning before and after contrast injection) are a potentially important, overlooked source of medically unnecessary radiation because of the dose-multiplier effect of extra phases. The purpose of this study was to determine the frequency of unindicated multiphase scanning and resultant excess radiation exposure in a sample referral population. METHODS: Abdominal and pelvic CT examinations (n = 500) performed at outside institutions submitted for tertiary interpretation were retrospectively reviewed for (1) the appropriateness of each phase on the basis of clinical indication and ACR Appropriateness Criteria(®) and (2) per phase and total radiation effective dose. RESULTS: A total of 978 phases were performed in 500 patients; 52.8% (264 of 500) received phases that were not supported by ACR criteria. Overall, 35.8% of phases (350 of 978) were unindicated, most commonly being delayed imaging (272 of 350). The mean overall total radiation effective dose per patient was 25.8 mSv (95% confidence interval, 24.2-27.5 mSv). The mean effective dose for unindicated phases was 13.1 mSv (95% confidence interval, 12.3-14.0 mSv), resulting in a mean excess effective dose of 16.8 mSv (95% confidence interval, 15.5-18.3 mSv) per patient. Unindicated radiation constituted 33.3% of the total radiation effective dose in this population. Radiation effective doses exceeding 50 mSv were found in 21.2% of patients (106 of 500). CONCLUSIONS: The results of this study suggest that a large proportion of patients undergoing abdominal and pelvic CT scanning receive unindicated additional phases that add substantial excess radiation dose with no associated clinical benefit.


Assuntos
Doses de Radiação , Radiação Ionizante , Radiografia Abdominal/efeitos adversos , Tomografia Computadorizada por Raios X/efeitos adversos , Procedimentos Desnecessários , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Intervalos de Confiança , Estudos Transversais , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Pelve/diagnóstico por imagem , Efeitos da Radiação , Radiografia Abdominal/normas , Medição de Risco , Tomografia Computadorizada por Raios X/normas , Estados Unidos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA