Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 679, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978005

RESUMO

BACKGROUND: Oxford Nanopore provides high throughput sequencing platforms able to reconstruct complete bacterial genomes with 99.95% accuracy. However, even small levels of error can obscure the phylogenetic relationships between closely related isolates. Polishing tools have been developed to correct these errors, but it is uncertain if they obtain the accuracy needed for the high-resolution source tracking of foodborne illness outbreaks. RESULTS: We tested 132 combinations of assembly and short- and long-read polishing tools to assess their accuracy for reconstructing the genome sequences of 15 highly similar Salmonella enterica serovar Newport isolates from a 2020 onion outbreak. While long-read polishing alone improved accuracy, near perfect accuracy (99.9999% accuracy or ~ 5 nucleotide errors across the 4.8 Mbp genome, excluding low confidence regions) was only obtained by pipelines that combined both long- and short-read polishing tools. Notably, medaka was a more accurate and efficient long-read polisher than Racon. Among short-read polishers, NextPolish showed the highest accuracy, but Pilon, Polypolish, and POLCA performed similarly. Among the 5 best performing pipelines, polishing with medaka followed by NextPolish was the most common combination. Importantly, the order of polishing tools mattered i.e., using less accurate tools after more accurate ones introduced errors. Indels in homopolymers and repetitive regions, where the short reads could not be uniquely mapped, remained the most challenging errors to correct. CONCLUSIONS: Short reads are still needed to correct errors in nanopore sequenced assemblies to obtain the accuracy required for source tracking investigations. Our granular assessment of the performance of the polishing pipelines allowed us to suggest best practices for tool users and areas for improvement for tool developers.


Assuntos
Benchmarking , Surtos de Doenças , Genoma Bacteriano , Nanoporos , Sequenciamento por Nanoporos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Salmonella enterica/genética , Salmonella enterica/isolamento & purificação , Humanos , Filogenia
2.
Microbiol Spectr ; 11(6): e0148223, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37812012

RESUMO

IMPORTANCE: In developed countries, the human diet is predominated by food commodities, which have been manufactured, processed, and stored in a food production facility. Little is known about the application of metagenomic sequencing approaches for detecting foodborne pathogens, such as L. monocytogenes, and characterizing microbial diversity in food production ecosystems. In this work, we investigated the utility of 16S rRNA amplicon and quasimetagenomic sequencing for the taxonomic and phylogenetic classification of Listeria culture enrichments of environmental swabs collected from dairy and seafood production facilities. We demonstrated that single-nucleotide polymorphism (SNP) analyses of L. monocytogenes metagenome-assembled genomes (MAGs) from quasimetagenomic data sets can achieve similar resolution as culture isolate whole-genome sequencing. To further understand the impact of genome coverage on MAG SNP cluster resolution, an in silico downsampling approach was employed to reduce the percentage of target pathogen sequence reads, providing an initial estimate of required MAG coverage for subtyping resolution of L. monocytogenes.


Assuntos
Listeria monocytogenes , Humanos , Listeria monocytogenes/genética , Microbiologia de Alimentos , Filogenia , RNA Ribossômico 16S/genética , Ecossistema , Alimentos Marinhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA