Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 141: 492-501, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31323313

RESUMO

Peroxiredoxins (Prx) are enzymes that efficiently reduce hydroperoxides through active participation of cysteine residues (CP, CR). The first step in catalysis, the reduction of peroxide substrate, is fast, 107 - 108 M-1s-1 for human Prx2. In addition, the high intracellular concentration of Prx positions them not only as good antioxidants but also as central players in redox signaling pathways. These biological functions can be affected by post-translational modifications that could alter the peroxidase activity and/or interaction with other proteins. In particular, inactivation by hyperoxidation of CP, which occurs when a second molecule of peroxide reacts with the CP in the sulfenic acid form, modulates their participation in redox signaling pathways. The higher sensitivity to hyperoxidation of some Prx has been related to the presence of structural motifs that disfavor disulfide formation at the active site, making the CP sulfenic acid more available for hyperoxidation or interaction with a redox protein target. We previously reported that treatment of human Prx2 with peroxynitrite results in tyrosine nitration, a post-translational modification on non-catalytic residues, yielding a more active peroxidase with higher resistance to hyperoxidation. In this work, studies on various mutants of hPrx2 confirm that the presence of the tyrosyl side-chain of Y193, belonging to the C-terminal YF motif of eukaryotic Prx, is necessary to observe the increase in Prx2 resistance to hyperoxidation. Moreover, our results underline the critical role of this structural motif on the rate of disulfide formation that determines the differential participation of Prx in redox signaling pathways.


Assuntos
Oxirredução , Peroxirredoxinas/genética , Processamento de Proteína Pós-Traducional/genética , Tirosina/genética , Domínio Catalítico/genética , Cisteína/genética , Dissulfetos/química , Humanos , Mutação/genética , Nitratos/metabolismo , Peroxidase/genética , Peróxidos/metabolismo , Peroxirredoxinas/efeitos dos fármacos , Peroxirredoxinas/metabolismo , Ácido Peroxinitroso/farmacologia , Transdução de Sinais/efeitos dos fármacos
2.
Protein Sci ; 28(1): 191-201, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30284335

RESUMO

Peroxiredoxins are thiol-dependent peroxidases that function in peroxide detoxification and H2 O2 induced signaling. Among the six isoforms expressed in humans, PRDX1 and PRDX2 share 97% sequence similarity, 77% sequence identity including the active site, subcellular localization (cytosolic) but they hold different biological functions albeit associated with their peroxidase activity. Using recombinant human PRDX1 and PRDX2, the kinetics of oxidation and hyperoxidation with H2 O2 and peroxynitrite were followed by intrinsic fluorescence. At pH 7.4, the peroxidatic cysteine of both isoforms reacts nearly tenfold faster with H2 O2 than with peroxynitrite, and both reactions are orders of magnitude faster than with most protein thiols. For both isoforms, the sulfenic acids formed are in turn oxidized by H2 O2 with rate constants of ca 2 × 103 M-1 s-1 and by peroxynitrous acid significantly faster. As previously observed, a crucial difference between PRDX1 and PRDX2 is on the resolution step of the catalytic cycle, the rate of disulfide formation (11 s-1 for PRDX1, 0.2 s-1 for PRDX2, independent of the oxidant) which correlates with their different sensitivity to hyperoxidation. This kinetic pause opens different pathways on redox signaling for these isoforms. The longer lifetime of PRDX2 sulfenic acid allows it to react with other protein thiols to translate the signal via an intermediate mixed disulfide (involving its peroxidatic cysteine), whereas PRDX1 continues the cycle forming disulfide involving its resolving cysteine to function as a redox relay. In addition, the presence of C83 on PRDX1 imparts a difference on peroxidase activity upon peroxynitrite exposure that needs further study.


Assuntos
Peróxido de Hidrogênio/química , Peroxirredoxinas/química , Ácido Peroxinitroso/química , Humanos , Cinética , Oxirredução , Proteínas Recombinantes/química , Ácidos Sulfênicos/química
3.
Biochemistry ; 57(24): 3416-3424, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29553725

RESUMO

Two-cysteine peroxiredoxins (Prx) have a three-step catalytic cycle consisting of (1) reduction of peroxide and formation of sulfenic acid on the enzyme, (2) condensation of the sulfenic acid with a thiol to form disulfide, also known as resolution, and (3) reduction of the disulfide by a reductant protein. By following changes in protein fluorescence, we have studied the pH dependence of reaction 2 in human peroxiredoxins 1, 2, and 5 and in Salmonella typhimurium AhpC and obtained rate constants for the reaction and p Ka values of the thiol and sulfenic acid involved for each system. The observed reaction 2 rate constant spans 2 orders of magnitude, but in all cases, reaction 2 appears to be slow compared to the same reaction in small-molecule systems, making clear the rates are limited by conformational features of the proteins. For each Prx, reaction 2 will become rate-limiting at some critical steady-state concentration of H2O2 producing the accumulation of Prx as sulfenic acid. When this happens, an alternative and faster-resolving Prx (or other peroxidase) may take over the antioxidant role. The accumulation of sulfenic acid Prx at distinct concentrations of H2O2 is embedded in the kinetic limitations of the catalytic cycle and may constitute the basis of a H2O2-mediated redox signal transduction pathway requiring neither inactivation nor posttranslational modification. The differences in the rate constants of resolution among Prx coexisting in the same compartment may partially explain their complementation in antioxidant function and stepwise sensing of H2O2 concentration.


Assuntos
Cisteína/metabolismo , Dissulfetos/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxidos/metabolismo , Peroxirredoxinas/metabolismo , Cisteína/química , Dissulfetos/química , Fluorescência , Humanos , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Cinética , Oxirredução , Peróxidos/química , Peroxirredoxinas/química , Salmonella typhimurium/enzimologia
4.
Biochem Mol Biol Educ ; 44(1): 28-37, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26443689

RESUMO

This practical class activity was designed to introduce students to recombinant protein expression and purification. The principal goal is to shed light on basic aspects concerning recombinant protein production, in particular protein expression, chromatography methods for protein purification, and enzyme activity as a tool to evaluate purity and conformation of the recombinant product. Herein, we describe the purification of a glutathione transferase from the human parasite Echinococcus granulosus (EgGST1), the causative agent of hydatidosis. EgGST1 is expressed fused to a histidine tag and is purified by immobilized metal affinity chromatography. Protein quantification based on direct (UV absorbance) and indirect (colorimetric) methods are used and discussed. A simple colorimetric assay is used to measure GST activity and special emphasis is put on how to use these measurements to follow protein purification yields, its enrichment and its correct folding along the purification process. EgGST1 is easily expressed with high yields, purified in absence of protease inhibitors and proved to be robust concerning enzyme activity and protein integrity on a 1 week practical activity.


Assuntos
Equinococose/parasitologia , Echinococcus granulosus/enzimologia , Glutationa Transferase/isolamento & purificação , Animais , Eletroforese em Gel de Poliacrilamida , Proteínas Recombinantes/isolamento & purificação
5.
J Biol Chem ; 289(22): 15536-43, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24719319

RESUMO

Peroxiredoxins (Prx) are efficient thiol-dependent peroxidases and key players in the mechanism of H2O2-induced redox signaling. Any structural change that could affect their redox state, oligomeric structure, and/or interaction with other proteins could have a significant impact on the cascade of signaling events. Several post-translational modifications have been reported to modulate Prx activity. One of these, overoxidation of the peroxidatic cysteine to the sulfinic derivative, inactivates the enzyme and has been proposed as a mechanism of H2O2 accumulation in redox signaling (the floodgate hypothesis). Nitration of Prx has been reported in vitro as well as in vivo; in particular, nitrated Prx2 was identified in brains of Alzheimer disease patients. In this work we characterize Prx2 tyrosine nitration, a post-translational modification on a noncatalytic residue that increases its peroxidase activity and its resistance to overoxidation. Mass spectrometry analysis revealed that treatment of disulfide-oxidized Prx2 with excess peroxynitrite renders mainly mononitrated and dinitrated species. Tyrosine 193 of the YF motif at the C terminus, associated with the susceptibility toward overoxidation of eukaryotic Prx, was identified as nitrated and is most likely responsible for the protection of the peroxidatic cysteine against oxidative inactivation. Kinetic analyses suggest that tyrosine nitration facilitates the intermolecular disulfide formation, transforming a sensitive Prx into a robust one. Thus, tyrosine nitration appears as another mechanism to modulate these enzymes in the complex network of redox signaling.


Assuntos
Eritrócitos/enzimologia , Proteínas de Homeodomínio/metabolismo , Nitrogênio/metabolismo , Estresse Oxidativo/fisiologia , Ácido Peroxinitroso/metabolismo , Animais , Domínio Catalítico , Echinococcus granulosus/enzimologia , Ativação Enzimática/fisiologia , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Peróxido de Hidrogênio/metabolismo , Oxirredução , Processamento de Proteína Pós-Traducional/fisiologia , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/fisiologia , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Tirosina/metabolismo
6.
Methods Enzymol ; 527: 41-63, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23830625

RESUMO

Evidence has accumulated showing that hydrogen peroxide (H2O2) acts as a signaling molecule via oxidation of critical cysteine residues on target proteins. The reaction of H2O2 with thiols is thermodynamically favored, but its selectivity is imposed by differences in reaction kinetics. Previously proposed signal relaying mechanisms, such as the floodgate hypothesis and widespread protein sulfenylation, appear inconsistent with kinetic and diffusion considerations. Among all cellular thiols, the peroxidatic cysteines of peroxiredoxins (Prxs) represent preferential targets considering their high rate constants and their cellular abundance that place them as the first step in the H2O2-induced signaling pathways. The oxidized Prxs could transfer the signal either via thiol-disulfide redox reactions or through nonredox protein-protein interactions. Recent studies evidence Prxs interactions with protein tyrosine kinases and phosphatases, indicating a potential connection between redox and phosphorylation signaling pathways that does not need the direct reaction of H2O2 with phosphatase or kinase critical cysteines. Posttranslational modifications of Prxs have been observed in vivo (mainly overoxidation of cysteines and phosphorylation of threonines) that affect their peroxidase activity, redox state, and/or oligomeric structure, and likely impact on H2O2 signaling. More focus on kinetic data and redox-sensitive protein-protein interactions are needed to unravel the molecular mechanisms of H2O2 signaling.


Assuntos
Peróxido de Hidrogênio/metabolismo , Peroxirredoxinas/metabolismo , Transdução de Sinais , Animais , Difusão , Células Endoteliais/metabolismo , Humanos , Cinética , Oxirredução , Processamento de Proteína Pós-Traducional , Ácidos Sulfênicos/metabolismo , Compostos de Sulfidrila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA