Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Cell Host Microbe ; 32(7): 1177-1191.e7, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38942027

RESUMO

Gut microbiota influence anti-tumor immunity, often by producing immune-modulating metabolites. However, microbes consume a variety of metabolites that may also impact host immune responses. We show that tumors grow unchecked in the omenta of microbe-replete mice due to immunosuppressive Tregs. By contrast, omental tumors in germ-free, neomycin-treated mice or mice colonized with altered Schaedler's flora (ASF) are spontaneously eliminated by CD8+ T cells. These mice lack Proteobacteria capable of arginine catabolism, causing increases in serum arginine that activate the mammalian target of the rapamycin (mTOR) pathway in Tregs to reduce their suppressive capacity. Transfer of the Proteobacteria, Escherichia coli (E. coli), but not a mutant unable to catabolize arginine, to ASF mice reduces arginine levels, restores Treg suppression, and prevents tumor clearance. Supplementary arginine similarly decreases Treg suppressive capacity, increases CD8+ T cell effectiveness, and reduces tumor burden. Thus, microbial consumption of arginine alters anti-tumor immunity, offering potential therapeutic strategies for tumors in visceral adipose tissue.


Assuntos
Arginina , Linfócitos T CD8-Positivos , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Omento , Linfócitos T Reguladores , Animais , Arginina/metabolismo , Camundongos , Linfócitos T Reguladores/imunologia , Microbioma Gastrointestinal/imunologia , Linfócitos T CD8-Positivos/imunologia , Omento/imunologia , Serina-Treonina Quinases TOR/metabolismo , Proteobactérias , Escherichia coli/imunologia , Neoplasias/imunologia , Feminino
2.
Immunol Rev ; 324(1): 4-10, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733141

RESUMO

Well known functions of adipose tissue include energy storage, regulation of thermogenesis, and glucose homeostasis-each of which are associated with the metabolic functions of fat. However, adipose tissues also have important immune functions. In this issue of Immunological Reviews, we present a series of articles that highlight the immune functions of adipose tissue, including the roles of specialized adipose-resident immune cells and fat-associated lymphoid structures. Importantly, immune cell functions in adipose tissues are often linked to the metabolic functions of adipocytes and vice versa. These reciprocal interactions and how they influence both immune and metabolic functions will be discussed in each article. In the first article, Wang et al.,11 discuss adipose-associated macrophages and how obesity and metabolism impact their phenotype and function. Several articles in this issue discuss T cells as either contributors to, or regulators of, inflammatory responses in adipose tissues. Valentine and Nikolajczyk12 provide insights into the role of T cells in obesity-associated inflammation and their contribution to metabolic dysfunction, whereas an article from Kallies and Vasanthakumar13 and another from Elkins and Li14 describe adipose-associated Tregs and how they help prevent inflammation and maintain metabolic homeostasis. Articles from Okabe35 as well as from Daley and Benezech15 discuss the structure and function of fat-associated lymphoid clusters (FALCs) that are prevalent in some adipose tissues and support local immune responses to pathogens, gut-derived microbes and fat-associated antigens. Finally, an article from Meher and McNamara16 describes how innate-like B1 cells in adipose tissues regulate cardiometabolic disease. Importantly, these articles highlight the physical and functional attributes of adipose tissues that are different between mice and humans, the metabolic and immune differences between various adipose depots in the body and the differences in immune cells, adipose tissues and metabolic functions between the sexes. At the end of this preface, we highlight how these differences are critically important for our understanding of anti-tumor immunity to cancers that metastasize to a specific example of visceral adipose tissue, the omentum. Together, these articles identify some unanswered mechanistic questions that will be important to address for a better understanding of immunity in adipose tissues.


Assuntos
Tecido Adiposo , Obesidade , Humanos , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Animais , Obesidade/imunologia , Obesidade/metabolismo , Homeostase , Inflamação/imunologia , Macrófagos/imunologia , Adipócitos/imunologia , Adipócitos/metabolismo , Metabolismo Energético , Imunidade
3.
Sci Immunol ; 8(84): eadc9081, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37327322

RESUMO

Multiple mechanisms restrain inflammation in neonates, most likely to prevent tissue damage caused by overly robust immune responses against newly encountered pathogens. Here, we identify a population of pulmonary dendritic cells (DCs) that express intermediate levels of CD103 (CD103int) and appear in the lungs and lung-draining lymph nodes of mice between birth and 2 weeks of age. CD103int DCs express XCR1 and CD205 and require expression of the transcription factor BATF3 for development, suggesting that they belong to the cDC1 lineage. In addition, CD103int DCs express CCR7 constitutively and spontaneously migrate to the lung-draining lymph node, where they promote stromal cell maturation and lymph node expansion. CD103int DCs mature independently of microbial exposure and TRIF- or MyD88-dependent signaling and are transcriptionally related to efferocytic and tolerogenic DCs as well as mature, regulatory DCs. Correlating with this, CD103int DCs show limited ability to stimulate proliferation and IFN-γ production by CD8+ T cells. Moreover, CD103int DCs acquire apoptotic cells efficiently, in a process that is dependent on the expression of the TAM receptor, Mertk, which drives their homeostatic maturation. The appearance of CD103int DCs coincides with a temporal wave of apoptosis in developing lungs and explains, in part, dampened pulmonary immunity in neonatal mice. Together, these data suggest a mechanism by which DCs sense apoptotic cells at sites of noninflammatory tissue remodeling, such as tumors or the developing lungs, and limit local T cell responses.


Assuntos
Linfócitos T CD8-Positivos , Pneumonia , Camundongos , Animais , c-Mer Tirosina Quinase/metabolismo , Células Dendríticas , Pulmão , Apoptose
4.
Hum Vaccin Immunother ; 18(6): 2127292, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36194255

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has illustrated the critical need for effective prophylactic vaccination to prevent the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Intranasal vaccination is an attractive approach for preventing COVID-19 as the nasal mucosa is the site of initial SARS-CoV-2 entry and viral replication prior to aspiration into the lungs. We previously demonstrated that a single intranasal administration of a candidate adenovirus type 5-vectored vaccine encoding the receptor-binding domain of the SARS-CoV-2 spike protein (AdCOVID) induced robust immunity in both the airway mucosa and periphery, and completely protected K18-hACE2 mice from lethal SARS-CoV-2 challenge. Here we show that a single intranasal administration of AdCOVID limits viral replication in the nasal cavity of K18-hACE2 mice. AdCOVID also induces sterilizing immunity in the lungs of mice as reflected by the absence of infectious virus. Finally, AdCOVID prevents SARS-CoV-2 induced pathological damage in the lungs of mice. These data show that AdCOVID not only limits viral replication in the respiratory tract, but it also prevents virus-induced inflammation and immunopathology following SARS-CoV-2 infection.


Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Animais , Humanos , Camundongos , Administração Intranasal , Anticorpos Antivirais , COVID-19/prevenção & controle , Pulmão , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus , Vacinas Virais/administração & dosagem , Vacinas contra COVID-19/administração & dosagem
5.
Cancer Immunol Res ; 10(5): 641-655, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35263766

RESUMO

Tumors that metastasize in the peritoneal cavity typically end up in the omental adipose tissue, a particularly immune-suppressive environment that includes specialized adipose-resident regulatory T cells (Treg). Tregs rapidly accumulate in the omentum after tumor implantation and potently suppress antitumor immunity. However, it is unclear whether these Tregs are recruited from the circulation or derived from preexisting adipose-resident Tregs by clonal expansion. Here we show that Tregs in tumor-bearing omenta predominantly have thymus-derived characteristics. Moreover, naïve tumor antigen-specific CD4+ T cells fail to differentiate into Tregs in tumor-bearing omenta. In fact, Tregs derived from the pretumor repertoire are sufficient to suppress antitumor immunity and promote tumor growth. However, tumor implantation in the omentum does not promote Treg clonal expansion, but instead leads to increased clonal diversity. Parabiosis experiments show that despite tissue-resident (noncirculating) characteristics of omental Tregs in naïve mice, tumor implantation promotes a rapid influx of circulating Tregs, many of which come from the spleen. Finally, we show that newly recruited Tregs rapidly acquire characteristics of adipose-resident Tregs in tumor-bearing omenta. These data demonstrate that most Tregs in omental tumors are recruited from the circulation and adapt to their environment by altering their homing, transcriptional, and metabolic properties.


Assuntos
Neoplasias , Omento , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Camundongos , Neoplasias/patologia , Omento/patologia , Baço/patologia , Linfócitos T Reguladores
6.
Gynecol Oncol ; 164(1): 170-180, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34844776

RESUMO

BACKGROUND: Progress in immunotherapy use for gynecologic malignancies is hampered by poor tumor antigenicity and weak T cell infiltration of the tumor microenvironment (TME). Wnt/ß-catenin pathway modulation demonstrated patient benefit in clinical trials as well as enhanced immune cell recruitment in preclinical studies. The purpose of this study was to characterize the pathways by which Wnt/ß-catenin modulation facilitates a more immunotherapy-favorable TME. METHODS: Human tumor samples and in vivo patient-derived xenograft and syngeneic murine models were administered Wnt/ß-catenin modulating agents DKN-01 and CGX-1321 individually or in sequence. Analytical methods included immunohistochemistry, flow cytometry, multiplex cytokine/chemokine array, and RNA sequencing. RESULTS: DKK1 blockade via DKN-01 increased HLA/MHC expression in human and murine tissues, correlating with heightened expression of known MHC I regulators: NFkB, IL-1, LPS, and IFNy. PORCN inhibition via CGX-1321 increased production of T cell chemoattractant CXCL10, providing a mechanism for observed increases in intra-tumoral T cells. Diverse leukocyte recruitment was noted with elevations in B cells and macrophages, with increased tumor expression of population-specific chemokines. Sequential DKK1 blockade and PORCN inhibition decreased tumor burden as evidenced by reduced omental weights. CONCLUSIONS: Wnt/ß-catenin pathway modulation increases MHC I expression and promotes tumor leukocytic infiltration, facilitating a pro-immune TME associated with decreased tumor burden. This intervention overcomes common tumor immune-evasion mechanisms and may render ovarian tumors susceptible to immunotherapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias dos Genitais Femininos/genética , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Genes MHC Classe I/genética , Neoplasias dos Genitais Femininos/patologia , Neoplasias dos Genitais Femininos/terapia , Humanos , Imunoterapia , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Vaccines (Basel) ; 9(8)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34452006

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has highlighted the urgent need for effective prophylactic vaccination to prevent the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Intranasal vaccination is an attractive strategy to prevent COVID-19 as the nasal mucosa represents the first-line barrier to SARS-CoV-2 entry. The current intramuscular vaccines elicit systemic immunity but not necessarily high-level mucosal immunity. Here, we tested a single intranasal dose of our candidate adenovirus type 5-vectored vaccine encoding the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein (AdCOVID) in inbred, outbred, and transgenic mice. A single intranasal vaccination with AdCOVID elicited a strong and focused immune response against RBD through the induction of mucosal IgA in the respiratory tract, serum neutralizing antibodies, and CD4+ and CD8+ T cells with a Th1-like cytokine expression profile. A single AdCOVID dose resulted in immunity that was sustained for over six months. Moreover, a single intranasal dose completely protected K18-hACE2 mice from lethal SARS-CoV-2 challenge, preventing weight loss and mortality. These data show that AdCOVID promotes concomitant systemic and mucosal immunity and represents a promising vaccine candidate.

8.
J Leukoc Biol ; 109(4): 717-729, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32881077

RESUMO

The peritoneal cavity is a fluid filled space that holds most of the abdominal organs, including the omentum, a visceral adipose tissue that contains milky spots or clusters of leukocytes that are organized similar to those in conventional lymphoid tissues. A unique assortment of leukocytes patrol the peritoneal cavity and migrate in and out of the milky spots, where they encounter Ags or pathogens from the peritoneal fluid and respond accordingly. The principal role of leukocytes in the peritoneal cavity is to preserve tissue homeostasis and secure tissue repair. However, when peritoneal homeostasis is disturbed by inflammation, infection, obesity, or tumor metastasis, specialized fibroblastic stromal cells and mesothelial cells in the omentum regulate the recruitment of peritoneal leukocytes and steer their activation in unique ways. In this review, the types of cells that reside in the peritoneal cavity, the role of the omentum in their maintenance and activation, and how these processes function in response to pathogens and malignancy will be discussed.


Assuntos
Imunidade , Omento/imunologia , Cavidade Peritoneal/fisiologia , Imunidade Adaptativa , Animais , Humanos , Imunidade Inata
9.
Cancer Med ; 10(2): 709-717, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33369199

RESUMO

OBJECTIVE: Patients with epithelial ovarian cancer (EOC) typically present with late-stage disease, posing a significant challenge to treatment. Although taxane and platinum-based chemotherapy plus surgical debulking are initially effective, EOC is marked by frequent recurrence with resistant disease. Immunotherapy represents an appealing treatment paradigm given the ability of immune cells to engage metastatic sites and impede recurrence; however, response rates to checkpoint blockade in ovarian cancer have been disappointing. Here, we tested whether class I HDAC inhibition can promote anti-tumor T cell responses in a spontaneous and nonspontaneous murine model of EOC. METHODS: We used the spontaneous Tg-MISIIR-Tag and nonspontaneous ID8 models of murine ovarian cancer to test this hypothesis. Whole tumor transcriptional changes were assessed using the nCounter PanCancer Mouse Immune Profiling Panel. Changes in select protein expression of regulatory and effector T cells were measured by flow cytometry. RESULTS: We found that treatment with the class I HDAC inhibitor entinostat upregulated pathways and genes associated with CD8 T cell cytotoxic function, while downregulating myeloid derived suppressor cell chemoattractants. Suppressive capacity of regulatory T cells within tumors and associated ascites was significantly reduced, reversing the CD8-Treg ratio. CONCLUSIONS: Our findings suggest class I HDAC inhibition can promote activation of intratumoral CD8 T cells, potentially by compromising suppressive networks within the EOC tumor microenvironment. In this manner, class I HDAC inhibition might render advanced-stage EOC susceptible to immunotherapeutic treatment modalities.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Histona Desacetilase 1/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Neoplasias Ovarianas/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Apoptose , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/patologia , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/patologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Mol Cancer Ther ; 20(3): 602-611, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33323456

RESUMO

The immunosuppressive effects of TGFß promotes tumor progression and diminishes response to therapy. In this study, we used ID8-p53-/- tumors as a murine model of high-grade serous ovarian cancer. An mAb targeting all three TGFß ligands was used to neutralize TGFß. Ascites and omentum were collected and changes in T-cell response were measured using flow. Treatment with anti-TGFß therapy every other day following injection of tumor cells resulted in decreased ascites volume (4.1 mL vs. 0.7 mL; P < 0.001) and improved the CD8:Treg ratio (0.37 vs. 2.5; P = 0.02) compared with untreated mice. A single dose of therapy prior to tumor challenge resulted in a similar reduction of ascites volume (2.7 vs. 0.67 mL; P = 0.002) and increased CD8:Tregs ratio (0.36 vs. 1.49; P = 0.007), while also significantly reducing omental weight (114.9 mg vs. 93.4 mg; P = 0.017). Beginning treatment before inoculation with tumor cells and continuing for 6 weeks, we observe similar changes and prolonged overall survival (median 70 days vs. 57.5 days). TGFß neutralization results in favorable changes to the T-cell response within the tumor microenvironment, leading to decreased tumor progression in ovarian cancer. The utilization of anti-TGFß therapy may be an option for management in patients with ovarian cancer to improve clinical outcomes and warrants further investigation.


Assuntos
Neoplasias Ovarianas/genética , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Análise de Sobrevida , Transfecção
11.
MedComm (2020) ; 1(2): 121-128, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33073260

RESUMO

Approximately 30% of human cancers harbor a gain-in-function mutation in the RAS gene, resulting in constitutive activation of the RAS protein to stimulate downstream signaling, including the RAS-mitogen activated protein kinase pathway that drives cancer cells to proliferate and metastasize. RAS-driven oncogenesis also promotes immune evasion by increasing the expression of programmed cell death ligand-1, reducing the expression of major histocompatibility complex molecules that present antigens to T-lymphocytes and altering the expression of cytokines that promote the differentiation and accumulation of immune suppressive cell types such as myeloid-derived suppressor cells, regulatory T-cells, and cancer-associated fibroblasts. Together, these changes lead to an immune suppressive tumor microenvironment that impedes T-cell activation and infiltration and promotes the outgrowth and metastasis of tumor cells. As a result, despite the growing success of checkpoint immunotherapy, many patients with RAS-driven tumors experience resistance to therapy and poor clinical outcomes. Therefore, RAS inhibitors in development have the potential to weaken cancer cell immune evasion and enhance the antitumor immune response to improve survival of patients with RAS-driven cancers. This review highlights the potential of RAS inhibitors to enhance or broaden the anti-cancer activity of currently available checkpoint immunotherapy.

12.
bioRxiv ; 2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33052351

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has highlighted the urgent need for effective preventive vaccination to reduce burden and spread of severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) in humans. Intranasal vaccination is an attractive strategy to prevent COVID-19 as the nasal mucosa represents the first-line barrier to SARS-CoV-2 entry before viral spread to the lung. Although SARS-CoV-2 vaccine development is rapidly progressing, the current intramuscular vaccines are designed to elicit systemic immunity without conferring mucosal immunity. Here, we show that AdCOVID, an intranasal adenovirus type 5 (Ad5)-vectored vaccine encoding the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, elicits a strong and focused immune response against RBD through the induction of mucosal IgA, serum neutralizing antibodies and CD4+ and CD8+ T cells with a Th1-like cytokine expression profile. Therefore, AdCOVID, which promotes concomitant systemic and local mucosal immunity, represents a promising COVID-19 vaccine candidate.

13.
Ther Adv Med Oncol ; 12: 1758835920913798, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32313567

RESUMO

BACKGROUND: The Wnt/ß-catenin pathway is linked to tumorigenesis in a variety of tumors and promotes T cell exclusion and resistance to checkpoint inhibitors. We sought to determine whether a small molecule inhibitor of this pathway, WNT974, would impair tumor growth, affect gene expression patterns, and improve the immune response in human and murine ovarian cancer models. METHODS: Human ovarian cancer cells were treated with WNT974 in vitro. RNAseq libraries were constructed and differences in gene expression patterns between responders and nonresponders were compared to The Cancer Genome Atlas (TCGA). Mice with subcutaneous or intraperitoneal ID8 ovarian cancer tumors were treated with WNT974, paclitaxel, combination, or control. Tumor growth and survival were measured. Flow cytometry and ß-TCR repertoire analysis were used to determine the immune response. RESULTS: Gene expression profiling revealed distinct signatures in responders and nonresponders, which strongly correlated with T cell infiltration patterns in the TCGA analysis of ovarian cancer. WNT974 inhibited tumor growth, prevented ascites formation, and prolonged survival in mouse models. WNT974 increased the ratio of CD8+ T cells to T regulatory cells (Tregs) in tumors and enhanced the effector functions of infiltrating CD4+ and CD8+ T cells. Treatment also decreased the expression of inhibitory receptors on CD8+ T cells. Combining WNT974 with paclitaxel further reduced tumor growth, prolonged survival, and expanded the T cell repertoire. CONCLUSIONS: These findings suggest that inhibiting the Wnt/ß-catenin pathway may have a potent immunomodulatory effect in the treatment of ovarian cancer, particularly when combined with paclitaxel.

14.
Cancers (Basel) ; 12(3)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213921

RESUMO

In ovarian cancer, upregulation of the Wnt/ß-catenin pathway leads to chemoresistance and correlates with T cell exclusion from the tumor microenvironment (TME). Our objectives were to validate these findings in an independent cohort of ovarian cancer subjects and determine whether inhibiting the Wnt pathway in a syngeneic ovarian cancer murine model could create a more T-cell-inflamed TME, which would lead to decreased tumor growth and improved survival. We preformed RNA sequencing in a cohort of human high grade serous ovarian carcinoma subjects. We used CGX1321, an inhibitor to the porcupine (PORCN) enzyme that is necessary for secretion of WNT ligand, in mice with established ID8 tumors, a murine ovarian cancer cell line. In order to investigate the effect of decreased Wnt/ß-catenin pathway activity in the dendritic cells (DCs), we injected ID8 cells in mice that lacked ß-catenin specifically in DCs. Furthermore, to understand how much the effects of blocking the Wnt/ß-catenin pathway are dependent on CD8+ T cells, we injected ID8 cells into mice with CD8+ T cell depletion. We confirmed a negative correlation between Wnt activity and T cell signature in our cohort. Decreasing WNT ligand production resulted in increases in T cell, macrophage and dendritic cell functions, decreased tumor burden and improved survival. Reduced tumor growth was found in mice that lacked ß-catenin specifically in DCs. When CD8+ T cells were depleted, CGX1321 treatment did not have the same magnitude of effect on tumor growth. Our investigation confirmed an increase in Wnt activity correlated with a decreased T-cell-inflamed environment; a relationship that was further supported in our pre-clinical model that suggests inhibiting the Wnt/ß-catenin pathway was associated with decreased tumor growth and improved survival via a partial dependence on CD8+ T cells.

15.
Cancer Immunol Immunother ; 68(12): 2081-2094, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31720815

RESUMO

Histone deacetylase (HDAC) inhibitors impair tumor cell proliferation and alter gene expression. However, the impact of these changes on anti-tumor immunity is poorly understood. Here, we showed that the class I HDAC inhibitor, entinostat (ENT), promoted the expression of immune-modulatory molecules, including MHCII, costimulatory ligands, and chemokines on murine breast tumor cells in vitro and in vivo. ENT also impaired tumor growth in vivo-an effect that was dependent on both CD8+ T cells and IFNγ. Moreover, ENT promoted intratumoral T-cell clonal expansion and enhanced their functional activity. Importantly, ENT sensitized normally unresponsive tumors to the effects of PD1 blockade, predominantly through increases in T-cell proliferation. Our findings suggest that class I HDAC inhibitors impair tumor growth by enhancing the proliferative and functional capacity of CD8+ T cells and by sensitizing tumor cells to T-cell recognition.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Benzamidas/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linfócitos T CD8-Positivos/imunologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Histona Desacetilases/uso terapêutico , Linfócitos do Interstício Tumoral/imunologia , Piridinas/uso terapêutico , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Imunidade Celular , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo
16.
J Immunol ; 203(8): 2121-2129, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31501259

RESUMO

Ab-secreting cells (ASC) or plasma cells are essential components of the humoral immune system. Although Abs of different isotypes have distinct functions, it is not known if the ASC that secrete each isotype are also distinct. ASC downregulate their surface BCR upon differentiation, hindering analyses that couple BCR information to other molecular characteristics. In this study, we developed a methodology using fixation, permeabilization, and intracellular staining coupled with cell sorting and reversal of the cross-links to allow RNA sequencing of isolated cell subsets. Using hemagglutinin and nucleoprotein Ag-specific B cell tetramers and intracellular staining for IgM, IgG, and IgA isotypes, we were able to derive and compare the gene expression programs of ASC subsets that were responding to the same Ags following influenza infection in mice. Intriguingly, whereas a shared ASC signature was identified, each ASC isotype-specific population expressed distinct transcriptional programs controlling cellular homing, metabolism, and potential effector functions. Additionally, we extracted and compared BCR clonotypes and found that each ASC isotype contained a unique, clonally related CDR3 repertoire. In summary, these data reveal specific complexities in the transcriptional programming of Ag-specific ASC populations.


Assuntos
Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Influenza Humana/imunologia , Plasmócitos/imunologia , Plasmócitos/metabolismo , Transcriptoma , Animais , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células Tumorais Cultivadas
17.
Cancers (Basel) ; 11(6)2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167446

RESUMO

Alterations in the Wnt signaling pathway are associated with the advancement of cancers; however, the exact mechanisms responsible remain largely unknown. It has recently been established that heightened intratumoral Wnt signaling correlates with tumor immunomodulation and immune suppression, which likely contribute to the decreased efficacy of multiple cancer therapeutics. Here, we review available literature pertaining to connections between Wnt pathway activation in the tumor microenvironment and local immunomodulation. We focus specifically on preclinical and clinical data supporting the hypothesis that strategies targeting Wnt signaling could act as adjuncts for cancer therapy, either in combination with chemotherapy or immunotherapy, in a variety of tumor types.

18.
Transl Res ; 204: 31-38, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30048638

RESUMO

The impressive successes of immunotherapy have yet to be reliably translated to treatment of ovarian cancer, which may be a consequence of the unique barriers to T cell migration and tumor engagement in the peritoneal cavity and omentum. Epigenetic alterations contribute to establishment of these barriers and other mechanisms of immune subversion; therefore, epigenetic modifying agents represent an opportunity to mount effective antitumor immune responses by disrupting this finely tuned tumor epigenetic framework. Here, we discuss how epigenetic modifiers might permit and stimulate de novo antitumor immune responses in ovarian cancer, focusing largely on 2 common classes, DNA methyltransferase and histone deacetylase inhibitors. Specifically, increasing T and NK cell trafficking to the tumor microenvironment as well as induction of altered tumor cell phenotypes that promote immune engagement and cytotoxicity may provide a platform upon which to elaborate existing immunotherapeutic strategies. Indeed, promising combination of epigenetic modifying agents with checkpoint blockade antibodies or cellular therapies in preclinical models has led to a burgeoning number of clinical trials. Therefore, rather than implementation as a monotherapy, epigenetic modifiers may well be best suited as adjuvants in combinatorial strategies, potentiating antitumor immune responses and unleashing the promise of immunotherapy in ovarian cancer.


Assuntos
Epigênese Genética , Tolerância Imunológica , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/imunologia , Feminino , Humanos , Imunoterapia , Neoplasias Ovarianas/terapia
19.
Cancer Immunol Immunother ; 68(2): 175-188, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30334128

RESUMO

The expression of MHC class II molecules (MHCII) on tumor cells correlates with survival and responsiveness to immunotherapy. However, the mechanisms underlying these observations are poorly defined. Using a murine breast tumor line, we showed that MHCII-expressing tumors grew more slowly than controls and recruited more functional CD4+ and CD8+ T cells. In addition, MHCII-expressing tumors contained more TCR clonotypes expanded to a larger degree than control tumors. Functional CD8+ T cells in tumors depended on CD4+ T cells. However, both CD4+ and CD8+ T cells eventually became exhausted, even in MHCII-expressing tumors. Treatment with anti-CTLA4, but not anti-PD-1 or anti-TIM-3, promoted complete eradication of MHCII-expressing tumors. These results suggest tumor cell expression of MHCII facilitates the local activation of CD4+ T cells, indirectly helps the activation and expansion of CD8+ T cells, and, in combination with the appropriate checkpoint inhibitor, promotes tumor regression.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Neoplasias Mamárias Experimentais/imunologia , Carga Tumoral/imunologia , Animais , Anticorpos/imunologia , Anticorpos/farmacologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Antígeno CTLA-4/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transativadores/genética , Transativadores/imunologia , Transativadores/metabolismo , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética
20.
J Am Heart Assoc ; 7(23): e010239, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30488760

RESUMO

Background We aim to generate a line of "universal donor" human induced pluripotent stem cells (hi PSC s) that are nonimmunogenic and, therefore, can be used to derive cell products suitable for allogeneic transplantation. Methods and Results hi PSC s carrying knockout mutations for 2 key components (ß2 microglobulin and class II major histocompatibility class transactivator) of major histocompatibility complexes I and II (ie, human leukocyte antigen [HLA] I/ II knockout hi PSC s) were generated using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated protein 9 (Cas9) gene-editing system and differentiated into cardiomyocytes. Pluripotency-gene expression and telomerase activity in wild-type ( WT ) and HLAI / II knockout hi PSC s, cardiomyocyte marker expression in WT and HLAI / II knockout hi PSC -derived cardiomyocytes, and assessments of electrophysiological properties (eg, conduction velocity, action-potential and calcium transient half-decay times, and calcium transient increase times) in spheroid-fusions composed of WT and HLAI / II knockout cardiomyocytes, were similar. However, the rates of T-cell activation before (≈21%) and after (≈24%) exposure to HLAI / II knockout hi PSC -derived cardiomyocytes were nearly indistinguishable and dramatically lower than after exposure to WT hi PSC -derived cardiomyocytes (≈75%), and when WT and HLAI / II knockout hi PSC -derived cardiomyocyte spheroids were cultured with human peripheral blood mononuclear cells, the WT hi PSC -derived cardiomyocyte spheroids were smaller and displayed contractile irregularities. Finally, expression of HLA -E and HLA -F was inhibited in HLAI / II knockout cardiomyocyte spheroids after coculture with human peripheral blood mononuclear cells, although HLA -G was not inhibited; these results are consistent with the essential role of class II major histocompatibility class transactivator in transcriptional activation of the HLA -E and HLA-F genes, but not the HLA -G gene. Expression of HLA -G is known to inhibit natural killer cell recognition and killing of cells that lack other HLAs. Conclusions HLAI / II knockout hi PSC s can be differentiated into cardiomyocytes that induce little or no activity in human immune cells and, consequently, are suitable for allogeneic transplantation.


Assuntos
Genes MHC da Classe II/genética , Genes MHC Classe I/genética , Células-Tronco Pluripotentes Induzidas/transplante , Transplante de Células-Tronco/métodos , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Humanos , Masculino , Miócitos Cardíacos/transplante , Transplante Homólogo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA