Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Rev Dis Primers ; 10(1): 16, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453957

RESUMO

Alkaptonuria is a rare inborn error of metabolism caused by the deficiency of homogentisate 1,2-dioxygenase activity. The consequent homogentisic acid (HGA) accumulation in body fluids and tissues leads to a multisystemic and highly debilitating disease whose main features are dark urine, ochronosis (HGA-derived pigment in collagen-rich connective tissues), and a painful and severe form of osteoarthropathy. Other clinical manifestations are extremely variable and include kidney and prostate stones, aortic stenosis, bone fractures, and tendon, ligament and/or muscle ruptures. As an autosomal recessive disorder, alkaptonuria affects men and women equally. Debilitating symptoms appear around the third decade of life, but a proper and timely diagnosis is often delayed due to their non-specific nature and a lack of knowledge among physicians. In later stages, patients' quality of life might be seriously compromised and further complicated by comorbidities. Thus, appropriate management of alkaptonuria requires a multidisciplinary approach, and periodic clinical evaluation is advised to monitor disease progression, complications and/or comorbidities, and to enable prompt intervention. Treatment options are patient-tailored and include a combination of medications, physical therapy and surgery. Current basic and clinical research focuses on improving patient management and developing innovative therapies and implementing precision medicine strategies.


Assuntos
Alcaptonúria , Ocronose , Masculino , Humanos , Feminino , Alcaptonúria/complicações , Alcaptonúria/diagnóstico , Alcaptonúria/terapia , Qualidade de Vida , Ocronose/complicações , Ocronose/diagnóstico , Rim/metabolismo , Ácido Homogentísico/metabolismo
2.
Cells ; 11(22)2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36429096

RESUMO

Nitisinone (NTBC) was recently approved to treat alkaptonuria (AKU), but there is no information on its impact on oxidative stress and inflammation, which are observed in AKU. Therefore, serum samples collected during the clinical studies SONIA1 (40 AKU patients) and SONIA2 (138 AKU patients) were tested for Serum Amyloid A (SAA), CRP and IL-8 by ELISA; Advanced Oxidation Protein Products (AOPP) by spectrophotometry; and protein carbonyls by Western blot. Our results show that NTBC had no significant effects on the tested markers except for a slight but statistically significant effect for NTBC, but not for the combination of time and NTBC, on SAA levels in SONIA2 patients. Notably, the majority of SONIA2 patients presented with SAA > 10 mg/L, and 30 patients in the control group (43.5%) and 40 patients (58.0%) in the NTBC-treated group showed persistently elevated SAA > 10 mg/L at each visit during SONIA2. Higher serum SAA correlated with lower quality of life and higher morbidity. Despite no quantitative differences in AOPP, the preliminary analysis of protein carbonyls highlighted patterns that deserve further investigation. Overall, our results suggest that NTBC cannot control the sub-clinical inflammation due to increased SAA observed in AKU, which is also a risk factor for developing secondary amyloidosis.


Assuntos
Alcaptonúria , Humanos , Alcaptonúria/tratamento farmacológico , Alcaptonúria/complicações , Alcaptonúria/metabolismo , Produtos da Oxidação Avançada de Proteínas/metabolismo , Produtos da Oxidação Avançada de Proteínas/uso terapêutico , Qualidade de Vida , Biomarcadores/metabolismo , Proteína Amiloide A Sérica/metabolismo , Inflamação/metabolismo , Estresse Oxidativo
3.
JIMD Rep ; 55(1): 75-87, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32904992

RESUMO

BACKGROUND: Increased homogentisic acid (HGA) causes ochronosis. Nitisinone decreases HGA. The aim was to study the effect of nitisinone on the ochronosis progression. METHODS: Photographs of the eyes and ears were acquired from patients attending the National Alkaptonuria Centre (NAC) at V-1 (pre-baseline visit), V0 (baseline visit when 2 mg nitisinone was commenced), and yearly at V1, V2, and V3 visits. Photographs were inspected for evolution of ochronotic pigment and also scored categorically to derive eye, ear, and combined ochronosis scores. An ear cartilage biopsy was also carried out at V0 and one year after V3 (V4) and ochronotic pigment was assessed and quantitated. Visits were compared for changes in pigment. Fasting blood and 24-hour urine samples were collected for measurement of HGA. RESULTS: There were 80 AKU patients at V0, and 52, 47, and 40 at V1, V2, and V3 in the group with variable numbers (VAR Group) respectively; 23 patients attended once before V0, in the V-1 visit. Photographs of patients show increase in eye pigment between V-1 and V0, followed by decrease post-nitisinone at V1, V2, and V3. Ear and combined ochronosis semiquantitative scoring showed an increase between V-1 and V0 (P < .01), followed by a decrease at V1, V2, and V3, in the VAR group (P < .01). Ochronotic pigment in ear biopsy between V0 and V4 showed a 19.1% decrease (P < .05). CONCLUSIONS: Nitisinone decreases HGA and partially reverses ochronosis.

4.
J Inherit Metab Dis ; 43(2): 259-268, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31503358

RESUMO

Alkaptonuria (AKU) is caused by homogentisate 1,2-dioxygenase deficiency that leads to homogentisic acid (HGA) accumulation, ochronosis and severe osteoarthropathy. Recently, nitisinone treatment, which blocks HGA formation, has been effective in AKU patients. However, a consequence of nitisinone is elevated tyrosine that can cause keratopathy. The effect of tyrosine and phenylalanine dietary restriction was investigated in nitisinone-treated AKU mice, and in an observational study of dietary intervention in AKU patients. Nitisinone-treated AKU mice were fed tyrosine/phenylalanine-free and phenylalanine-free diets with phenylalanine supplementation in drinking water. Tyrosine metabolites were measured pre-nitisinone, post-nitisinone, and after dietary restriction. Subsequently an observational study was undertaken in 10 patients attending the National Alkaptonuria Centre (NAC), with tyrosine >700 µmol/L who had been advised to restrict dietary protein intake and where necessary, to use tyrosine/phenylalanine-free amino acid supplements. Elevated tyrosine (813 µmol/L) was significantly reduced in nitisinone-treated AKU mice fed a tyrosine/phenylalanine-free diet in a dose responsive manner. At 3 days of restriction, tyrosine was 389.3, 274.8, and 144.3 µmol/L with decreasing phenylalanine doses. In contrast, tyrosine was not effectively reduced in mice by a phenylalanine-free diet; at 3 days tyrosine was 757.3, 530.2, and 656.2 µmol/L, with no dose response to phenylalanine supplementation. In NAC patients, tyrosine was significantly reduced (P = .002) when restricting dietary protein alone, and when combined with tyrosine/phenylalanine-free amino acid supplementation; 4 out of 10 patients achieved tyrosine <700 µmol/L. Tyrosine/phenylalanine dietary restriction significantly reduced nitisinone-induced tyrosinemia in mice, with phenylalanine restriction alone proving ineffective. Similarly, protein restriction significantly reduced circulating tyrosine in AKU patients.


Assuntos
Alcaptonúria/dietoterapia , Alcaptonúria/tratamento farmacológico , Cicloexanonas/farmacologia , Dieta com Restrição de Proteínas , Nitrobenzoatos/farmacologia , Tirosinemias/dietoterapia , Alcaptonúria/metabolismo , Animais , Feminino , Humanos , Masculino , Camundongos , Fenilalanina/metabolismo , Tirosina/metabolismo , Tirosinemias/metabolismo
5.
Rheumatology (Oxford) ; 56(1): 156-164, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28028161

RESUMO

OBJECTIVE: Alkaptonuria (AKU) is a rare autosomal recessive disease resulting from a single enzyme deficiency in tyrosine metabolism. As a result, homogentisic acid cannot be metabolized, causing systemic increases. Over time, homogentisic acid polymerizes and deposits in collagenous tissues, leading to ochronosis. Typically, this occurs in joint cartilages, leading to an early onset, rapidly progressing osteoarthropathy. The aim of this study was to examine tissue turnover in cartilage affected by ochronosis and its role in disease initiation and progression. METHODS: With informed patient consent, hip and knee cartilages were obtained at surgery for arthropathy due to AKU (n = 6; 2 knees/4 hips) and OA (n = 12; 5 knees/7 hips); healthy non-arthritic (non-OA n = 6; 1 knee/5 hips) cartilages were obtained as waste from trauma surgery. We measured cartilage concentrations (normalized to dry weight) of racemized aspartate, GAG, COMP and deamidated COMP (D-COMP). Unpaired AKU, OA and non-OA samples were compared by non-parametric Mann-Whitney U test. RESULTS: Despite more extractable total protein being obtained from AKU cartilage than from OA or non-OA cartilage, there was significantly less extractable GAG, COMP and D-COMP in AKU samples compared with OA and non-OA comparators. Racemized Asx (aspartate and asparagine) was significantly enriched in AKU cartilage compared with in OA cartilage. CONCLUSIONS: These novel data represent the first examination of cartilage matrix components in a sample of patients with AKU, representing almost 10% of the known UK alkaptonuric population. Compared with OA and non-OA, AKU cartilage demonstrates a very low turnover state and has low levels of extractable matrix proteins.


Assuntos
Envelhecimento/metabolismo , Alcaptonúria/metabolismo , Cartilagem Articular/metabolismo , Artropatias/metabolismo , Ocronose/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Ácido Aspártico/metabolismo , Biomarcadores/metabolismo , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Estudos de Casos e Controles , Feminino , Glicosaminoglicanos/metabolismo , Articulação do Quadril , Humanos , Articulação do Joelho , Masculino , Pessoa de Meia-Idade , Osteoartrite do Quadril/metabolismo , Osteoartrite do Joelho/metabolismo , Adulto Jovem
6.
Curr Opin Pharmacol ; 22: 107-14, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25978274

RESUMO

Studying severe phenotypes of rare syndromes can elucidate disease mechanisms of more common disorders and identify potential therapeutic targets. Lessons from rare bone diseases contributed to the development of the most successful class of bone active agents, the bisphosphonates. More recent research on rare bone diseases has helped elucidate key pathways and identify new targets in bone resorption and bone formation including cathepsin K and sclerostin, for which drugs are now in clinical trials. By contrast, there has been much less focus on rare cartilage diseases and osteoarthritis (OA) remains a common disease with no effective therapy. Investigation of rare cartilage syndromes is identifying new potential targets in OA including GDF5 and lubricin. Research on the arthropathy of the ultra-rare disease alkaptonuria has identified several new features of the OA phenotype, including high density mineralized protrusions (HDMPs) which constitute a newly identified mechanism of joint destruction.


Assuntos
Doenças Ósseas/fisiopatologia , Doenças das Cartilagens/fisiopatologia , Doenças Raras/fisiopatologia , Animais , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico , Doenças Ósseas/tratamento farmacológico , Doenças Ósseas/epidemiologia , Doenças das Cartilagens/tratamento farmacológico , Doenças das Cartilagens/epidemiologia , Difosfonatos/farmacologia , Difosfonatos/uso terapêutico , Desenho de Fármacos , Humanos , Terapia de Alvo Molecular , Osteoartrite/tratamento farmacológico , Osteoartrite/fisiopatologia , Fenótipo , Doenças Raras/tratamento farmacológico
7.
JIMD Rep ; 24: 21-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25772318

RESUMO

BACKGROUND: Alkaptonuria (AKU) is a serious genetic disease due to a defect in tyrosine metabolism, leading to increased serum levels of homogentisic acid (HGA). Nitisinone decreases HGA in AKU, but the concentration-response relationship has not been previously reported. OBJECTIVES: To determine the relationship between serum concentrations of nitisinone and the effect on both HGA and tyrosine; secondly to determine steady-state pharmacokinetics of nitisinone in AKU patients. METHOD: Thirty-two patients with AKU received either 1, 2, 4, or 8 mg nitisinone daily. Urine and serum HGA and serum tyrosine and nitisinone were measured during 24 h at baseline (before first dose) and after 4 weeks of treatment. RESULTS: Nitisinone pharmacokinetics (area under the curve [AUC] and maximum concentrations [C max]) were dose proportional. The median oral clearance determined in all patients, irrespective of dose, was 3.18 mL/h·kg (range 1.6-6.7).Nitisinone decreased urinary excretion of HGA in a concentration-dependent manner, with a maximum effect seen at average nitisinone concentrations of 3 µmol/L. The association between nitisinone and tyrosine concentrations was less pronounced. Serum levels of HGA at Week 4 were below the limit of quantitation in 65% of samples, which prevented determination of the relationship with nitisinone concentrations. CONCLUSION: Nitisinone exhibits dose-proportional pharmacokinetics in the studied dosage interval. Urinary excretion of HGA decreases in a concentration-dependent manner, while the increase in tyrosine is less clearly related to nitisinone concentrations.

8.
Curr Rheumatol Rep ; 16(11): 457, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25266991

RESUMO

Nitisinone 2-(2-nitro-4-trifluoromethylbenzoyl)cyclohexane-1,3-dione (NTBC), an effective herbicide, is the licensed treatment for the human condition, hereditary tyrosinaemia type 1 (HT-1). Its mode of action interrupts tyrosine metabolism through inhibition of 4-hydroxyphenylpyruvate dioxygenase (HPPD). Nitisinone is a remarkable safe drug to use with few side effects reported. Therefore, we propose that it should be investigated as a potential treatment for other disorders of tyrosine metabolism. These include alkaptonuria (AKU), a rare disease resulting is severe, early-onset osteoarthritis. We present a case study from the disease, and attempts to use the drug both off-label and in clinical research through the DevelopAKUre consortium.


Assuntos
Alcaptonúria/tratamento farmacológico , Cicloexanonas/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Nitrobenzoatos/uso terapêutico , Tirosinemias/tratamento farmacológico , 4-Hidroxifenilpiruvato Dioxigenase/antagonistas & inibidores , Animais , Pesquisa Biomédica , Humanos , Uso Off-Label
9.
J Clin Pathol ; 66(5): 367-73, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23486607

RESUMO

Alkaptonuria (AKU) is an autosomal recessive condition arising as a result of a genetic deficiency of the enzyme homogentisate 1,2 dioxygenase and characterised by accumulation of homogentisic acid (HGA). Oxidative conversion of HGA leads to production of a melanin-like polymer in a process termed ochronosis. The binding of ochronotic pigment to the connective tissues of the body leads to multisystem disorder dominated by premature severe spondylo-arthropathy. Other systemic features include stones (renal, prostatic, salivary, gall bladder), renal damage/failure, osteopenia/fractures, ruptures of tendons/muscle/ligaments, respiratory compromise, hearing loss and aortic valve disease. Detection of these features requires systematic investigation. Treatment in AKU patients is palliative and unsatisfactory. Ascorbic acid, low protein diet and physiotherapy have been tried but do not alter the underlying metabolic defect. Regular surveillance to detect and treat complications early is important. Palliative pain management is a crucial issue in AKU. Timely spinal surgery and arthroplasty are the major treatment approaches at present. A potential disease modifying drug, nitisinone, inhibits 4-hydroxy-phenyl-pyruvate-dioxygenase and decreases formation of HGA and could prevent or slow the progression of disease in AKU. If nitisinone therapy is able to complement the biochemical 'cure' with improved outcomes, it will completely alter the way we approach the management of this disease. Greater efforts to improve recognition and registration of the disease will be worthwhile. Improved laboratory diagnostics to monitor the tyrosine metabolic pathway that includes plasma metabolites including tyrosine to monitor efficacy, toxicity and safety postnitisinone will also be required.


Assuntos
Alcaptonúria , Animais , Humanos , Guias de Prática Clínica como Assunto
10.
BMC Physiol ; 11: 12, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21801348

RESUMO

BACKGROUND: In recent years the interest on the relationship of gut hormones to bone processes has increased and represents one of the most interesting aspects in skeletal research. The proportion of bone mass to soft tissue is a relationship that seems to be controlled by delicate and subtle regulations that imply "cross-talks" between the nutrient intake and tissues like fat. Thus, recognition of the mechanisms that integrate a gastrointestinal-fat-bone axis and its application to several aspects of human health is vital for improving treatments related to bone diseases. This work analysed the effects of gut hormones in cell cultures of three osteoblastic cell lines which represent different stages in osteoblastic development. Also, this is the first time that there is a report on the direct effects of glucagon-like peptide 2, and obestatin on osteoblast-like cells. METHODS: mRNA expression levels of five gut hormone receptors (glucose-dependent insulinotropic peptide [GIP], glucagon-like peptide 1 [GLP-1], glucagon-like peptide 2 [GLP-2], ghrelin [GHR] and obestatin [OB]) were analysed in three osteoblastic cell lines (Saos-2, TE-85 and MG-63) showing different stages of osteoblast development using reverse transcription and real time polymerase chain reaction. The responses to the gut peptides were studied using assays for cell viability, and biochemical bone markers: alkaline phosphatase (ALP), procollagen type 1 amino-terminal propeptides (P1NP), and osteocalcin production. RESULTS: The gut hormone receptor mRNA displayed the highest levels for GIP in Saos-2 and the lowest levels in MG-63, whereas GHR and GPR39 (the putative obestatin receptor) expression was higher in TE-85 and MG-63 and lower in Saos-2. GLP-1 and GLP-2 were expressed only in MG-63 and TE-85. Treatment of gut hormones to cell lines showed differential responses: higher levels in cell viability in Saos-2 after GIP, in TE-85 and MG-63 after GLP-1, GLP-2, ghrelin and obestatin. ALP showed higher levels in Saos-2 after GIP, GHR and OB and in TE-85 after GHR. P1NP showed higher levels after GIP and OB in Saos-2. Decreased levels of P1NP were observed in TE-85 and MG-63 after GLP-1, GLP-2 and OB. MG-63 showed opposite responses in osteocalcin levels after GLP-2. CONCLUSIONS: These results suggest that osteoblast activity modulation varies according to different development stage under different nutrition related-peptides.


Assuntos
Hormônios Gastrointestinais/farmacologia , Osteoblastos/efeitos dos fármacos , Fosfatase Alcalina/biossíntese , Linhagem Celular , Polipeptídeo Inibidor Gástrico/farmacologia , Grelina/farmacologia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Peptídeo 2 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1 , Receptor do Peptídeo Semelhante ao Glucagon 2 , Humanos , Osteoblastos/metabolismo , Osteocalcina/biossíntese , Fragmentos de Peptídeos/biossíntese , Pró-Colágeno/biossíntese , Receptores dos Hormônios Gastrointestinais/biossíntese , Receptores de Grelina/biossíntese , Receptores de Glucagon/biossíntese
11.
Rheumatology (Oxford) ; 50(2): 271-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20952450

RESUMO

OBJECTIVES: Alkaptonuria (AKU) is a genetic disorder caused by lack of the enzyme responsible for breaking down homogentisic acid (HGA), an intermediate in tyrosine metabolism. HGA is deposited as a polymer, termed ochronotic pigment, in collagenous tissues. Pigmentation is progressive over many years, leading to CTDs including severe arthropathies. To investigate the mechanism of pigmentation and to determine how it leads to arthropathy, we aimed to develop an in vitro model of ochronosis. METHODS: Osteosarcoma cell lines MG63, SaOS-2 and TE85 were cultured in medium containing HGA from 0.1 µM to 1 mM. Cultures were examined by light microscopy and transmission electron microscopy, and Schmorl's stain was used to detect pigment deposits in vitro, following the observation that this stain identifies ochronotic pigment in AKU tissues. The effects of HGA on cell growth and collagen synthesis were also determined. RESULTS: There was a dose-related deposition of pigment in cells and associated matrix from 33 µM to 0.33 mM HGA. Pigmentation in vitro was much more rapid than in vivo, indicating that protective mechanisms exist in tissues in situ. Pigment deposition was dependent on the presence of cells and was observed at HGA concentrations that were not toxic. There was an inhibition of cell growth and a stimulation of type I collagen synthesis up to 0.33 mM HGA, but severe cell toxicity at 1 mM HGA. CONCLUSION: We have developed an in vitro model of ochronosis that should contribute to understanding joint destruction in AKU and to the aetiology of OA.


Assuntos
Alcaptonúria/enzimologia , Ácido Homogentísico/metabolismo , Artropatias/enzimologia , Ocronose/enzimologia , Alcaptonúria/genética , Células Cultivadas , Humanos , Artropatias/genética , Modelos Biológicos , Ocronose/etiologia
12.
Clin Chem Lab Med ; 46(1): 43-56, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18020966

RESUMO

Incretins such as glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are intestinal hormones that are released in response to ingestion of nutrients, especially carbohydrate. They have a number of important biological effects, which include release of insulin, inhibition of glucagon and somatostatin, maintenance of beta-cell mass, delay of gastric emptying, and inhibition of feeding. These properties allow them to be potentially suitable agents for the treatment of type 2 diabetes (T2D). Incretin receptors are also present in other parts of the body including the brain, where their effects are beginning to be understood and their relevance to disorders of nutrition and ageing are being explored. There is currently a pandemic of obesity and diabetes, and existing treatments are largely inadequate in regard to efficacy as well as their ability to tackle important factors in the pathogenesis of T2D. There is increasing evidence that current treatments do not address the issue of progressive beta-cell failure in T2D. As obesity is the engine that is driving the epidemic of diabetes, it is disappointing that most treatments that succeed in lowering plasma glucose are also associated with weight gain. It is now well established that intensively treated T2D has a better outcome than standard treatment. Consequently, achieving better control of diabetes with lower HbA1c is the goal of optimal treatment. Despite the use of usual therapeutic agents in T2D, often in high doses and as combinations, such as metformin, sulphonylurea, alpha-glycosidase inhibitors, thiazolidinediones and a number of animal and human insulin preparations, optimal control of glycaemia is not achieved. The use of incretins as therapeutic agents offers a new approach to the treatment of T2D. Incretin metabolism is abnormal in T2D, evidenced by a decreased incretin effect, reduction in nutrient-mediated secretion of GIP and GLP-1 in T2D, and resistance to GIP. GLP-1, on the other hand, when administered intravenously in T2D is able to increase insulin secretion and improve glucose homeostasis. As GLP-1 has a very short half-life, due to rapid degradation by the enzyme dipeptidyl peptidase IV (DPPIV), analogues of GIP and GLP-1 that are resistant to the action of DPPIV have been developed and clinical trials have shown their effectiveness. Another novel agent, naturally resistant to DPPIV that is given by subcutaneous injection is a synthetic peptide called exenatide, has recently been approved for treatment of T2D in the USA. Efforts are underway to develop agents that can be given orally and include a DPPIV inhibitor that has been licensed for the treatment of T2D in the USA, and several other agents are undergoing clinical trials. Strategies to augment the biological actions of GIP and/or GLP-1 in T2D are expected to minimise weight gain, reduce hypoglycaemic episodes and prevent progressive beta-cell failure by increasing beta-cell mass. The optimal agent(s) that may mimic and replace the endogenous incretin effect is not fully known and awaits the outcome of clinical trials that are still ongoing. The potential therapeutic role in non-diabetic states, including obesity and neurodegenerative disease, is intriguing and depends upon results from ongoing research.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hipoglicemiantes/uso terapêutico , Insulina/metabolismo , Tecido Adiposo/metabolismo , Sequência de Aminoácidos , Glicemia/metabolismo , Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Humanos , Hipoglicemiantes/farmacologia , Incretinas/sangue , Incretinas/metabolismo , Insulina/sangue , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Fígado/metabolismo , Dados de Sequência Molecular , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA