Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neoplasia ; 33: 100837, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36162331

RESUMO

KRAS is the most commonly mutated oncogene in human cancers with limited therapeutic options, thus there is a critical need to identify novel targets and inhibiting agents. The 78-kDa glucose-regulated protein GRP78, which is upregulated in KRAS cancers, is an essential chaperone and the master regulator of the unfolded protein response (UPR). Following up on our recent discoveries that GRP78 haploinsufficiency suppresses both KRASG12D-driven pancreatic and lung tumorigenesis, we seek to determine the underlying mechanisms. Here, we report that knockdown of GRP78 via siRNA reduced oncogenic KRAS protein level in human lung, colon, and pancreatic cancer cells bearing various KRAS mutations. This effect was at the post-transcriptional level and is independent of proteasomal degradation or autophagy. Moreover, targeting GRP78 via small molecule inhibitors such as HA15 and YUM70 with anti-cancer activities while sparing normal cells significantly suppressed oncogenic KRAS expression in vitro and in vivo, associating with onset of apoptosis and loss of viability in cancer cells bearing various KRAS mutations. Collectively, our studies reveal that GRP78 is a previously unidentified regulator of oncogenic KRAS expression, and, as such, augments the other anti-cancer activities of GRP78 small molecule inhibitors to potentially achieve general, long-term suppression of mutant KRAS-driven tumorigenesis.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Proteínas Proto-Oncogênicas p21(ras) , Carcinogênese , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Glucose , Humanos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , RNA Interferente Pequeno
2.
Oncogene ; 40(20): 3624-3632, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33931739

RESUMO

Lung cancer is the leading cause of cancer mortality worldwide and KRAS is the most commonly mutated gene in lung adenocarcinoma (LUAD). The 78-kDa glucose-regulated protein GRP78/BiP is a key endoplasmic reticulum chaperone protein and a major pro-survival effector of the unfolded protein response (UPR). Analysis of the Cancer Genome Atlas database and immunostain of patient tissues revealed that compared to normal lung, GRP78 expression is generally elevated in human lung cancers, including tumors bearing the KRASG12D mutation. To test the requirement of GRP78 in human lung oncogenesis, we generated mouse models containing floxed Grp78 and Kras Lox-Stop-Lox G12D (KrasLSL-G12D) alleles. Simultaneous activation of the KrasG12D allele and knockout of the Grp78 alleles were achieved in the whole lung or selectively in lung alveolar epithelial type 2 cells known to be precursors for adenomas that progress to LUAD. Here we report that GRP78 haploinsufficiency is sufficient to suppress KrasG12D-mediated lung tumor progression and prolong survival. Furthermore, GRP78 knockdown in human lung cancer cell line A427 (KrasG12D/+) leads to activation of UPR and apoptotic markers and loss of cell viability. Our studies provide evidence that targeting GRP78 represents a novel therapeutic approach to suppress mutant KRAS-mediated lung tumorigenesis.


Assuntos
Chaperona BiP do Retículo Endoplasmático/metabolismo , Neoplasias Pulmonares/patologia , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Resposta a Proteínas não Dobradas , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Chaperona BiP do Retículo Endoplasmático/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA