Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Funct Biomater ; 14(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37504841

RESUMO

Nanogels are candidates for biomedical applications, and core-shell nanogels offer the potential to tune thermoresponsive behaviour with the capacity for extensive degradation. These properties were achieved by the combination of a core of poly(N-isopropylmethacrylamide) and a shell of poly(N-isopropylacrylamide), both crosslinked with the degradable crosslinker N,N'-bis(acryloyl)cystamine. In this work, the degradation behaviour of these nanogels was characterised using asymmetric flow field flow fractionation coupled with multi-angle and dynamic light scattering. By monitoring the degradation products of the nanogels in real-time, it was possible to identify three distinct stages of degradation: nanogel swelling, nanogel fragmentation, and nanogel fragment degradation. The results indicate that the core-shell nanogels degrade slower than their non-core-shell counterparts, possibly due to a higher degree of self-crosslinking reactions occurring in the shell. The majority of the degradation products had molecule weights below 10 kDa, which suggests that they may be cleared through the kidneys. This study provides important insights into the design and characterisation of degradable nanogels for biomedical applications, highlighting the need for accurate characterisation techniques to measure the potential biological impact of nanogel degradation products.

2.
RSC Adv ; 12(4): 2196-2206, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35425260

RESUMO

We report the synthesis of core-shell nanogels by sequential addition of thermoresponsive monomers; N-isopropylacrylamide (NIPAM) and N-isopropylmethacrylamide (NIPMAM). The aggregation behaviour of aqueous dispersions of these particles in the presence of salt can be tuned by varying the monomer ratio. The inclusion of degradable cross-linker bis(acryloyl)cystamine (BAC) allows the nanogels to degrade in the presence of reducing agent, with nanogels composed of a copolymer of the two monomers not showing the same high levels of degradation as the comparable core-shell particles. These levels of degradation were also seen with physiologically relevant reducing agent concentration at pH 7. Therefore, it is hoped that the aggregation of these nanogels will have applications in nanomedicine and beyond.

3.
Artigo em Inglês | MEDLINE | ID: mdl-31566913

RESUMO

Colorectal cancer remains a significant cause of morbidity and mortality worldwide. Half of all patients develop liver metastases, presenting unique challenges for their treatment. The shortcomings of conventional chemotherapy has encouraged the use of nanomedicines; the application of nanotechnology in the diagnosis and treatment of disease. In spite of technological improvements in nanotechnology, the complexity of biological systems hinders the prospect of nanomedicines being applied in cancer therapy at the present time. This review highlights current biological barriers and discusses aspects of tumor biology together with the physicochemical features of the nanocarrier, that need to be considered in order to develop effective nanotherapeutics for colorectal cancer patients with liver metastases. It becomes clear that incorporating an interdisciplinary approach when developing nanomedicines should assure appropriate disease-driven design and that this will form a critical step in improving their clinical translation. This article is characterized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Assuntos
Neoplasias Colorretais , Sistemas de Liberação de Medicamentos , Neoplasias Hepáticas , Nanomedicina , Nanopartículas , Animais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/secundário , Camundongos
4.
RSC Adv ; 10(51): 30463-30475, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516041

RESUMO

Mucus lines the moist cavities throughout the body, acting as barrier by protecting the underlying cells against the external environment, but it also hinders the permeation of drugs and drug delivery systems. As the rate of diffusion is low, the development of a system which could increase retention time at the mucosal surface would prove beneficial. Here, we have designed a range of branched copolymers to act as functional mucus-responsive oil-in-water emulsifiers comprising the hydrophilic monomer oligo(ethylene glycol) methacrylate and a hydrophobic dodecyl initiator. The study aimed to investigate the importance of chain end functionality on successful emulsion formation, by systematically replacing a fraction of the hydrophobic chain ends with a secondary poly(ethylene glycol) based hydrophilic initiator in a mixed-initiation strategy; a decrease of up to 75 mole percent of hydrophobic chain ends within the branched polymer emulsifiers was shown to maintain comparative emulsion stability. These redundant chain ends allowed for functionality to be incorporated into the polymers via a xanthate based initiator containing a masked thiol group; thiol groups are known to have mucoadhesive character, due to their ability to form disulfide bonds with the cysteine rich areas of mucus. The mucoadhesive nature of emulsions stabilised by thiol-containing branched copolymers was compared to non-functional emulsions in the presence of a biosimilar mucosal substrate and enhanced adherence to the mucosal surface was observed. Importantly, droplet rupture and mucus triggered release of dye-containing oil was seen from previously highly-stable thiol-functional emulsions; this observation was not mirrored by non-functional emulsions where droplet integrity was maintained even in the presence of mucus.

5.
Eur J Pharm Biopharm ; 138: 30-36, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-29777772

RESUMO

Oral drug administration remains the preferred approach for treatment of HIV in most patients. Maraviroc (MVC) is the first in class co-receptor antagonist, which blocks HIV entry into host cells. MVC has an oral bioavailability of approximately 33%, which is limited by poor permeability as well as affinity for CYP3A and several drug transporters. While once-daily doses are now the favoured option for HIV therapy, dose-limiting postural hypotension has been of theoretical concern when administering doses high enough to achieve this for MVC (particularly during coadministration of enzyme inhibitors). To overcome low bioavailability and modify the pharmacokinetic profile, a series of 70 wt% MVC solid drug nanoparticle (SDN) formulations (containing 30 wt% of various polymer/surfactant excipients) were generated using emulsion templated freeze-drying. The lead formulation contained PVA and AOT excipients (MVCSDNPVA/AOT), and was demonstrated to be fully water-dispersible to release drug nanoparticles with z-average diameter of 728 nm and polydispersity index of 0.3. In vitro and in vivo studies of MVCSDNPVA/AOT showed increased apparent permeability of MVC, compared to a conventional MVC preparation, with in vivo studies in rats showing a 2.5-fold increase in AUC (145.33 vs. 58.71 ng h ml-1). MVC tissue distribution was similar or slightly increased in tissues examined compared to the conventional MVC preparation, with the exception of the liver, spleen and kidneys, which showed statistically significant increases in MVC for MVCSDNPVA/AOT. These data support a novel oral format with the potential for dose reduction while maintaining therapeutic MVC exposure and potentially enabling a once-daily fixed dose combination product.


Assuntos
Maraviroc/administração & dosagem , Maraviroc/farmacocinética , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Administração Oral , Animais , Disponibilidade Biológica , Células CACO-2 , Linhagem Celular Tumoral , Composição de Medicamentos/métodos , Emulsões/administração & dosagem , Emulsões/química , Emulsões/farmacocinética , Excipientes/química , Excipientes/farmacocinética , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Humanos , Masculino , Maraviroc/química , Nanopartículas/química , Ratos , Ratos Wistar , Distribuição Tecidual
6.
J Polym Sci A Polym Chem ; 56(8): 938-946, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29610546

RESUMO

Complicated cases of retinal detachment can be treated with silicone oil tamponades. There is the potential for silicone oil tamponades to have adjunctive drug releasing behaviour within the eye, however the lipophilic nature of silicone oil limits the number of drugs that are suitable, and drug release from the hydrophobic reservoir is uncontrolled. Here, a radiometric technique was developed to accurately measure drug solubility in silicone oil and measure release into culture media. All-trans retinoic acid (atRA), a lipophilic drug known to act as an anti-proliferative within the eye, was used throughout this work. Chain-end modification of polydimethylsiloxane with atRA produced a polydimethylsiloxane retinoate (PDMS-atRA), which was used as an additive to silicone oil to modify the solvent environment within the silicone oil and the distribution coefficient. Blends of PDMS-atRA and silicone oil containing different concentrations of free atRA were produced. The presence of PDMS-atRA in silicone oil had a positive effect on atRA solubility and the longevity of release in vitro. The drug release period was independent of atRA starting concentration and dependent on the PDMS-atRA concentration in the blend. A clinically relevant release period of atRA over 7 weeks from a silicone oil blend with PDMS-atRA was observed. © 2018 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 938-946.

7.
J Nanobiotechnology ; 16(1): 22, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29544545

RESUMO

BACKGROUND: Recent work has developed solid drug nanoparticles (SDNs) of efavirenz that have been demonstrated, preclinically, improved oral bioavailability and the potential to enable up to a 50% dose reduction, and is currently being studied in a healthy volunteer clinical trial. Other SDN formulations are being studied for parenteral administration, either as intramuscular long-acting formulations, or for direct administration intravenously. The interaction of nanoparticles with the immunological and haematological systems can be a major barrier to successful translation but has been understudied for SDN formulations. Here we have conducted a preclinical evaluation of efavirenz SDN to assess their potential interaction with these systems. Platelet aggregation and activation, plasma coagulation, haemolysis, complement activation, T cell functionality and phenotype, monocyte derived macrophage functionality, and NK cell function were assessed in primary healthy volunteer samples treated with either aqueous efavirenz or efavirenz SDN. RESULTS: Efavirenz SDNs were shown not to interfere with any of the systems studied in terms of immunostimulation nor immunosuppression. Although efavirenz aqueous solution was shown to cause significant haemolysis ex vivo, efavirenz SDNs did not. No other interaction with haematological systems was observed. Efavirenz SDNs have been demonstrated to be immunologically and haematologically inert in the utilised assays. CONCLUSIONS: Taken collectively, along with the recent observation that lopinavir SDN formulations did not impact immunological responses, these data indicate that this type of nanoformulation does not elicit immunological consequences seen with other types of nanomaterial. The methodologies presented here provide a framework for pre-emptive preclinical characterisation of nanoparticle safety.


Assuntos
Fármacos Anti-HIV/farmacologia , Benzoxazinas/farmacologia , Portadores de Fármacos , Nanopartículas/química , Ativação Plaquetária/efeitos dos fármacos , Alcinos , Fármacos Anti-HIV/química , Benzoxazinas/química , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Ativação do Complemento/efeitos dos fármacos , Ciclopropanos , Composição de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Teste do Limulus , Lipopolissacarídeos/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Álcool de Polivinil/química , Cultura Primária de Células , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Vitamina E/química
8.
Nat Commun ; 9(1): 315, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358624

RESUMO

Chemoprophylaxis is currently the best available prevention from malaria, but its efficacy is compromised by non-adherence to medication. Here we develop a long-acting injectable formulation of atovaquone solid drug nanoparticles that confers long-lived prophylaxis against Plasmodium berghei ANKA malaria in C57BL/6 mice. Protection is obtained at plasma concentrations above 200 ng ml-1 and is causal, attributable to drug activity against liver stage parasites. Parasites that appear after subtherapeutic doses remain atovaquone-sensitive. Pharmacokinetic-pharmacodynamic analysis indicates protection can translate to humans at clinically achievable and safe drug concentrations, potentially offering protection for at least 1 month after a single administration. These findings support the use of long-acting injectable formulations as a new approach for malaria prophylaxis in travellers and for malaria control in the field.


Assuntos
Antimaláricos/uso terapêutico , Atovaquona/sangue , Atovaquona/uso terapêutico , Portadores de Fármacos/uso terapêutico , Malária/tratamento farmacológico , Malária/prevenção & controle , Plasmodium berghei/efeitos dos fármacos , Animais , Anopheles/parasitologia , Quimioprevenção/métodos , Modelos Animais de Doenças , Resistência a Medicamentos/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/uso terapêutico , Nanomedicina Teranóstica
9.
J Control Release ; 244(Pt A): 41-51, 2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-27845192

RESUMO

In a number of cases of retinal detachment, treatment may require the removal of the vitreous humour within the eye and replacement with silicone oil to aid healing of the retina. The insertion of silicone oil offers the opportunity to also deliver drugs to the inside of the eye; however, drug solubility in silicone oil is poor and release from this hydrophobic drug reservoir is not readily controlled. Here, we have designed a range of statistical graft copolymers that incorporate dimethylsiloxane and ethylene glycol repeat units within the side chains, allowing short chains of oligo(ethylene glycol) to be solubilised within silicone oil and provide hydrogen bond acceptor sites to interact with acid functional drug molecules. Our hypothesis included the potential for such interactions to be able to delay/control drug release and for polymer architecture and composition to play a role in the silicone oil miscibility of the targeted polymers. This strategy has been successfully demonstrated using both ibuprofen and all-trans retinoic acid; drugs with anti-inflammatory and anti-proliferation activity. After the copolymers were shown to be non-toxic to retinal pigment epithelial cells, studies of drug release using radiochemical approaches showed that the presence of 10v/v% of a linear graft copolymer could extend ibuprofen release over three-fold (from 3days to >9days) whilst the release of all-trans retinoic from the silicone oil phase was extended to >72days. These timescales are highly clinically relevant showing the potential to tune drug delivery during the healing process and offer an efficient means to improve patient outcomes.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Antineoplásicos/administração & dosagem , Ibuprofeno/administração & dosagem , Óleos de Silicone/química , Tretinoína/administração & dosagem , Vitreorretinopatia Proliferativa/tratamento farmacológico , Administração Oftálmica , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Dimetilpolisiloxanos/química , Portadores de Fármacos , Liberação Controlada de Fármacos , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ibuprofeno/química , Ibuprofeno/farmacologia , Polietilenoglicóis/química , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Solventes , Tretinoína/química , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA