Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(8): e1011226, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37585450

RESUMO

Contact insecticides are primarily used for the control of Anopheles malaria vectors. These chemicals penetrate mosquito legs and other appendages; the first barriers to reaching their neuronal targets. An ATP-Binding Cassette transporter from the H family (ABCH2) is highly expressed in Anopheles coluzzii legs, and further induced upon insecticide exposure. RNAi-mediated silencing of the ABCH2 caused a significant increase in deltamethrin mortality compared to control mosquitoes, coincident with a corresponding increase in 14C-deltamethrin penetration. RT-qPCR analysis and immunolocalization revealed ABCH2 to be mainly localized in the legs and head appendages, and more specifically, the apical part of the epidermis, underneath the cuticle. To unravel the molecular mechanism underlying the role of ABCH2 in modulating pyrethroid toxicity, two hypotheses were investigated: An indirect role, based on the orthology with other insect ABCH transporters involved with lipid transport and deposition of CHC lipids in Anopheles legs which may increase cuticle thickness, slowing down the penetration rate of deltamethrin; or the direct pumping of deltamethrin out of the organism. Evaluation of the leg cuticular hydrocarbon (CHC) content showed no affect by ABCH2 silencing, indicating this protein is not associated with the transport of leg CHCs. Homology-based modeling suggested that the ABCH2 half-transporter adopts a physiological homodimeric state, in line with its ability to hydrolyze ATP in vitro when expressed on its own in insect cells. Docking analysis revealed a deltamethrin pocket in the homodimeric transporter. Furthermore, deltamethrin-induced ATP hydrolysis in ABCH2-expressing cell membranes, further supports that deltamethrin is indeed an ABCH2 substrate. Overall, our findings pinpoint ABCH2 participating in deltamethrin toxicity regulation.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Anopheles/metabolismo , Resistência a Inseticidas , Mosquitos Vetores/genética , Inseticidas/farmacologia , Nitrilas/toxicidade , Nitrilas/metabolismo , Trifosfato de Adenosina/metabolismo , Controle de Mosquitos
2.
Sci Rep ; 12(1): 1402, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082312

RESUMO

Burkina Faso has one of the highest malaria burdens in sub-Saharan Africa despite the mass deployment of insecticide-treated nets (ITNs) and use of seasonal malaria chemoprevention (SMC) in children aged up to 5 years. Identification of risk factors for Plasmodium falciparum infection in rural Burkina Faso could help to identify and target malaria control measures. A cross-sectional survey of 1,199 children and adults was conducted during the peak malaria transmission season in the Cascades Region of south-west Burkina Faso in 2017. Logistic regression was used to identify risk factors for microscopically confirmed P. falciparum infection. A malaria transmission dynamic model was used to determine the impact on malaria cases averted of administering SMC to children aged 5-15 year old. P. falciparum prevalence was 32.8% in the study population. Children aged 5 to < 10 years old were at 3.74 times the odds (95% CI = 2.68-5.22, P < 0.001) and children aged 10 to 15 years old at 3.14 times the odds (95% CI = 1.20-8.21, P = 0.02) of P. falciparum infection compared to children aged less than 5 years old. Administration of SMC to children aged up to 10 years is predicted to avert an additional 57 malaria cases per 1000 population per year (9.4% reduction) and administration to children aged up to 15 years would avert an additional 89 malaria cases per 1000 population per year (14.6% reduction) in the Cascades Region, assuming current coverage of pyrethroid-piperonyl butoxide ITNs. Malaria infections were high in all age strata, although highest in children aged 5 to 15 years, despite roll out of core malaria control interventions. Given the burden of infection in school-age children, extension of the eligibility criteria for SMC could help reduce the burden of malaria in Burkina Faso and other countries in the region.


Assuntos
Amodiaquina/uso terapêutico , Antimaláricos/uso terapêutico , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Pirimetamina/uso terapêutico , Estações do Ano , Sulfadoxina/uso terapêutico , Adolescente , Adulto , Antígenos de Protozoários/sangue , Antígenos de Protozoários/imunologia , Burkina Faso/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , Combinação de Medicamentos , Quimioterapia Combinada/métodos , Feminino , Humanos , Mosquiteiros Tratados com Inseticida , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/isolamento & purificação , Prevalência , Fatores de Risco , População Rural , Resultado do Tratamento , Adulto Jovem
3.
J Bacteriol ; 202(20)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32778561

RESUMO

Uropathogenic Escherichia coli (UPEC) is the leading cause of human urinary tract infections (UTIs), and many patients experience recurrent infection after successful antibiotic treatment. The source of recurrent infections may be persistent bacterial reservoirs in vivo that are in a quiescent state and thus are not susceptible to antibiotics. Here, we show that multiple UPEC strains require a quorum to proliferate in vitro with glucose as the carbon source. At low cell density, the bacteria remain viable but enter a quiescent, nonproliferative state. Of the clinical UPEC isolates tested to date, 35% (51/145) enter this quiescent state, including isolates from the recently emerged, multidrug-resistant pandemic lineage ST131 (i.e., strain JJ1886) and isolates from the classic endemic lineage ST73 (i.e., strain CFT073). Moreover, quorum-dependent UPEC quiescence is prevented and reversed by small-molecule proliferants that stimulate colony formation. These proliferation cues include d-amino acid-containing peptidoglycan (PG) tetra- and pentapeptides, as well as high local concentrations of l-lysine and l-methionine. Peptidoglycan fragments originate from the peptidoglycan layer that supports the bacterial cell wall but are released as bacteria grow. These fragments are detected by a variety of organisms, including human cells, other diverse bacteria, and, as we show here for the first time, UPEC. Together, these results show that for UPEC, (i) sensing of PG stem peptide and uptake of l-lysine modulate the quorum-regulated decision to proliferate and (ii) quiescence can be prevented by both intra- and interspecies PG peptide signaling.IMPORTANCE Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs). During pathogenesis, UPEC cells adhere to and infiltrate bladder epithelial cells, where they may form intracellular bacterial communities (IBCs) or enter a nongrowing or slowly growing quiescent state. Here, we show in vitro that UPEC strains at low population density enter a reversible, quiescent state by halting division. Quiescent cells resume proliferation in response to sensing a quorum and detecting external signals, or cues, including peptidoglycan tetra- and pentapeptides.


Assuntos
Infecções por Escherichia coli/microbiologia , Peptidoglicano/metabolismo , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/crescimento & desenvolvimento , Antibacterianos/uso terapêutico , Divisão Celular , Células Epiteliais/microbiologia , Humanos , Percepção de Quorum , Escherichia coli Uropatogênica/metabolismo
4.
BMC Genomics ; 18(1): 669, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28854876

RESUMO

BACKGROUND: Malaria control in Africa is dependent upon the use insecticides but intensive use of a limited number of chemicals has led to resistance in mosquito populations. Increased production of enzymes that detoxify insecticides is one of the most potent resistance mechanisms. Several metabolic enzymes have been implicated in insecticide resistance but the processes controlling their expression have remained largely elusive. RESULTS: Here, we show that the transcription factor Maf-S regulates expression of multiple detoxification genes, including the key insecticide metabolisers CYP6M2 and GSTD1 in the African malaria vector Anopheles gambiae. Attenuation of this transcription factor through RNAi induced knockdown reduced transcript levels of these effectors and significantly increased mortality after exposure to the pyrethroid insecticides and DDT (permethrin: 9.2% to 19.2% (p = 0.015), deltamethrin: 3.9% to 21.6% (p = 0.036) and DDT: 1% to 11.7% (p = <0.01), whilst dramatically decreasing mortality induced by the organophosphate malathion (79.6% to 8.0% (p = <0.01)). Additional genes regulated by Maf-S were also identified providing new insight into the role of this transcription factor in insects. CONCLUSION: Maf-S is a key regulator of detoxification genes in Anopheles mosquitoes. Disrupting this transcription factor has opposing effects on the mosquito's response to different insecticide classes providing a mechanistic explanation to the negative cross resistance that has been reported between pyrethroids and organophosphates.


Assuntos
Anopheles/genética , Anopheles/metabolismo , Proteínas de Insetos/metabolismo , Insetos Vetores/genética , Insetos Vetores/metabolismo , Resistência a Inseticidas/genética , Fatores de Transcrição Maf/metabolismo , Animais , Anopheles/efeitos dos fármacos , Mineração de Dados , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Proteínas de Insetos/deficiência , Proteínas de Insetos/genética , Insetos Vetores/efeitos dos fármacos , Fatores de Transcrição Maf/deficiência , Fatores de Transcrição Maf/genética , Malária/transmissão
5.
J Struct Biol ; 164(2): 228-35, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18778777

RESUMO

Glutathione S-transferases (GSTs), a major family of detoxifying enzymes, play a pivotal role in insecticide resistance in insects. In the malaria vector Anopheles gambiae, insect-specific epsilon class GSTs are associated with resistance to the organochlorine insecticide DDT [1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane]. Five of the eight class members have elevated expression levels in a DDT resistant strain. agGSTe2 is considered the most important GST in conferring DDT resistance in A. gambiae, and is the only member of the epsilon class with confirmed DDT-metabolizing activity. A delta class GST from the same species shows marginal DDT-metabolizing activity but the activity of agGSTe2 is approximately 350x higher than the delta class agGST1-6. To investigate its catalytic mechanism and the molecular basis of its unusually high DDT-metabolizing ability, three agGSTe2 crystal structures including one apo form and two binary complex forms with the co-factor glutathione (GSH) or the inhibitor S-hexylglutathione (GTX) have been solved with a resolution up to 1.4A. The structure of agGSTe2 shows the canonical GST fold with a highly conserved N-domain and a less conserved C-domain. The binding of GSH or GTX does not induce significant conformational changes in the protein. The modeling of DDT into the putative DDT-binding pocket suggests that DDT is likely to be converted to DDE [1,1-dichloro-2,2-bis-(p-chlorophenyl)ethylene] through an elimination reaction triggered by the nucleophilic attack of the thiolate group of GS(-) on the beta-hydrogen of DDT. The comparison with the less active agGST1-6 provides the structural evidence for its high DDT-detoxifying activity. In short, this is achieved through the inclination of the upper part of H4 helix (H4'' helix), which brings residues Arg112, Glu116, and Phe120 closer to the GSH-binding site resulting in a more efficient GS(-)-stabilizing hydrogen-bond-network and higher DDT-binding affinity.


Assuntos
Anopheles/enzimologia , DDT/metabolismo , Glutationa Transferase/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Resistência a Medicamentos , Glutationa/química , Glutationa Transferase/metabolismo , Insetos Vetores , Insetos , Inseticidas/metabolismo , Malária/transmissão , Ligação Proteica , Conformação Proteica
6.
J Enzyme Inhib Med Chem ; 23(3): 391-9, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18569345

RESUMO

Elevated glutathione transferase (GST) E2 activity is associated with DDT resistance in the mosquito Anopheles gambiae. The search for chemomodulators that inhibit the function of AgGSTE2 would enhance the insecticidal activity of DDT. Therefore, we examined the interaction of novel natural plant products with heterologously expressed An. gambiae GSTE 2 in vitro. Five of the ten compounds, epiphyllocoumarin (Tral-1), knipholone anthrone, isofuranonaphthoquinones (Mr 13/2, Mr13/4) and the polyprenylated benzophenone (GG1) were shown to be potent inhibitors of AgGSTE2 with IC(50) values of 1.5 microM, 3.5 microM, 4 microM, 4.3 microM and 4.8 microM respectively. Non-competitive inhibition was obtained for Tral 1 and GG1 with regards to GSH (K(i) of 0.24 microM and 0.14 microM respectively). Competitive inhibition for Tral1 was obtained with CDNB (K(i) = 0.4 microM) whilst GG1 produced mixed type of inhibition. The K(i) and K(i)' for GSH for Tral-1 and GG1 were 0.2 microM and 0.1 microM respectively. These results suggest that the novel natural plant products, particularly Tral-1, represent potent AgGSTE2 in vitro inhibitors.


Assuntos
Anopheles/enzimologia , Produtos Biológicos/farmacologia , Glutationa Transferase/antagonistas & inibidores , Animais , DDT/farmacologia , Inibidores Enzimáticos , Resistência a Inseticidas/efeitos dos fármacos , Plantas/química
7.
Proc Natl Acad Sci U S A ; 104(41): 16215-20, 2007 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-17901209

RESUMO

The male accessory glands (MAGs) of many insect species produce and secrete a number of reproductive proteins collectively named Acps. These proteins, many of which are rapidly evolving, are essential for male fertility and represent formidable modulators of female postmating behavior. Upon copulation, the transfer of Acps has been shown in Drosophila and other insects to trigger profound physiological and behavioral changes in females, including enhanced ovulation/oviposition and reduced mating receptivity. In Anopheles gambiae mosquitoes, the principal vectors of human malaria, experimental evidence clearly demonstrates a key role of MAG products in inducing female responses. However, no Acp has been experimentally identified to date in this or in any other mosquito species. In this study we report on the identification of 46 MAG genes from An. gambiae, 25 of which are male reproductive tract-specific. This was achieved through a combination of bioinformatics searches and manual annotation confirmed by transcriptional profiling. Among these genes are the homologues of 40% of the Drosophila Acps analyzed, including Acp70A, or sex peptide, which in the fruit fly is the principal modulator of female postmating behavior. Although many Anopheles Acps belong to the same functional classes reported for Drosophila, suggesting a conserved role for these proteins in mosquitoes, some represent novel lineage-specific Acps that may have evolved to perform functions relevant to Anopheles reproductive behavior. Our findings imply that the molecular basis of Anopheles female postmating responses can now be studied, opening novel avenues for the field control of these important vectors of human disease.


Assuntos
Anopheles/genética , Anopheles/fisiologia , Genoma de Inseto , Comportamento Sexual Animal/fisiologia , Sequência de Aminoácidos , Animais , Anopheles/patogenicidade , Drosophila/genética , Proteínas de Drosophila/genética , Evolução Molecular , Feminino , Expressão Gênica , Genes de Insetos , Genitália Masculina/fisiologia , Hormônios Esteroides Gonadais/química , Hormônios Esteroides Gonadais/genética , Hormônios Esteroides Gonadais/fisiologia , Humanos , Hormônios de Inseto/química , Hormônios de Inseto/genética , Hormônios de Inseto/fisiologia , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/genética , Filogenia , Conformação Proteica , Homologia de Sequência de Aminoácidos , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/genética , Inibidores de Serina Proteinase/fisiologia , Especificidade da Espécie
8.
Biochem J ; 387(Pt 3): 879-88, 2005 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15631620

RESUMO

Epsilon class GSTs (glutathione transferases) are expressed at higher levels in Anopheles gambiae mosquitoes that are resistant to DDT [1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane] than in insecticide-susceptible individuals. At least one of the eight Epsilon GSTs in this species, GSTe2, efficiently metabolizes DDT to DDE [1,1-dichloro-2,2-bis-(p-chlorophenyl)ethane]. In the present study, we investigated the factors regulating expression of this class of GSTs. The activity of the promoter regions of GSTe2 and GSTe3 were compared between resistant and susceptible strains by transfecting recombinant reporter constructs into an A. gambiae cell line. The GSTe2 promoter from the resistant strain exhibited 2.8-fold higher activity than that of the susceptible strain. Six polymorphic sites were identified in the 352 bp sequence immediately upstream of GSTe2. Among these, a 2 bp adenosine indel (insertion/deletion) was found to have the greatest effect on determining promoter activity. The activity of the GSTe3 promoter was elevated to a lesser degree in the DDT-resistant strain (1.3-fold). The role of putative transcription-factor-binding sites in controlling promoter activity was investigated by sequentially deleting the promoter constructs. Several putative transcription-factor-binding sites that are responsive to oxidative stress were present within the core promoters of these GSTs, hence the effect of H2O2 exposure on the transcription of the Epsilon GSTs was investigated. In the DDT-resistant strain, expression of GSTe1, GSTe2 and GSTe3 was significantly increased by a 1-h exposure to H2O2, whereas, in the susceptible strain, only GSTe3 expression responded to this treatment.


Assuntos
Anopheles/enzimologia , Glutationa Transferase/biossíntese , Glutationa Transferase/genética , Regiões Promotoras Genéticas/fisiologia , Animais , Anopheles/efeitos dos fármacos , Anopheles/genética , Sequência de Bases , DDT/farmacologia , Regulação da Expressão Gênica , Resistência a Inseticidas , Dados de Sequência Molecular , Família Multigênica , Mutagênese Sítio-Dirigida , Estresse Oxidativo , Regiões Promotoras Genéticas/efeitos dos fármacos , Homologia de Sequência do Ácido Nucleico
9.
Acta Crystallogr D Biol Crystallogr ; 59(Pt 12): 2211-7, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14646079

RESUMO

Glutathione S-transferases (GSTs) are a major family of detoxification enzymes which possess a wide range of substrate specificities. Most organisms possess many GSTs belonging to multiple classes. Interest in GSTs in insects is focused on their role in insecticide resistance; many resistant insects have elevated levels of GST activity. In the malaria vector Anopheles gambiae, elevated GST levels are associated with resistance to the organochlorine insecticide DDT [1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane]. This mosquito is the source of an insect GST, agGSTd1-6, which metabolizes DDT and is inhibited by a number of pyrethroid insecticides. The crystal structure of agGSTd1-6 in complex with its inhibitor S-hexyl glutathione has been determined and refined at 2.0 A resolution. The structure adopts a classical GST fold and is similar to those of other insect delta-class GSTs, implying a common conjugation mechanism. A structure-based model for the binding of DDT to agGSTd1-6 reveals two subpockets in the hydrophobic binding site (H-site), each accommodating one planar p-chlorophenyl ring.


Assuntos
Anopheles/enzimologia , Glutationa Transferase/química , Glutationa/análogos & derivados , Insetos Vetores/enzimologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , DDT/metabolismo , DDT/farmacologia , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Glutationa/metabolismo , Glutationa/farmacologia , Glutationa Transferase/antagonistas & inibidores , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Resistência a Inseticidas , Malária/transmissão , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA