Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2026, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041148

RESUMO

Craniofacial microsomia (CFM; also known as Goldenhar syndrome), is a craniofacial developmental disorder of variable expressivity and severity with a recognizable set of abnormalities. These birth defects are associated with structures derived from the first and second pharyngeal arches, can occur unilaterally and include ear dysplasia, microtia, preauricular tags and pits, facial asymmetry and other malformations. The inheritance pattern is controversial, and the molecular etiology of this syndrome is largely unknown. A total of 670 patients belonging to unrelated pedigrees with European and Chinese ancestry with CFM, are investigated. We identify 18 likely pathogenic variants in 21 probands (3.1%) in FOXI3. Biochemical experiments on transcriptional activity and subcellular localization of the likely pathogenic FOXI3 variants, and knock-in mouse studies strongly support the involvement of FOXI3 in CFM. Our findings indicate autosomal dominant inheritance with reduced penetrance, and/or autosomal recessive inheritance. The phenotypic expression of the FOXI3 variants is variable. The penetrance of the likely pathogenic variants in the seemingly dominant form is reduced, since a considerable number of such variants in affected individuals were inherited from non-affected parents. Here we provide suggestive evidence that common variation in the FOXI3 allele in trans with the pathogenic variant could modify the phenotypic severity and accounts for the incomplete penetrance.


Assuntos
Síndrome de Goldenhar , Animais , Camundongos , Síndrome de Goldenhar/patologia , Assimetria Facial , Linhagem , Fatores de Transcrição Forkhead
2.
Am J Med Genet A ; 191(1): 77-83, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271508

RESUMO

Developmental abnormalities provide a unique opportunity to seek for the molecular mechanisms underlying human organogenesis. Esophageal development remains incompletely understood and elucidating causes for esophageal atresia (EA) in humans would contribute to achieve a better comprehension. Prenatal detection, syndromic classification, molecular diagnosis, and prognostic factors in EA are challenging. Some syndromes have been described to frequently include EA, such as CHARGE, EFTUD2-mandibulofacial dysostosis, Feingold syndrome, trisomy 18, and Fanconi anemia. However, no molecular diagnosis is made in most cases, including frequent associations, such as Vertebral-Anal-Cardiac-Tracheo-Esophageal-Renal-Limb defects (VACTERL). This study evaluates the clinical and genetic test results of 139 neonates and 9 fetuses followed-up at the Necker-Enfants Malades Hospital over a 10-years period. Overall, 52 cases were isolated EA (35%), and 96 were associated with other anomalies (65%). The latter group is divided into three subgroups: EA with a known genomic cause (9/148, 6%); EA with Vertebral-Anal-Cardiac-Tracheo-Esophageal-Renal-Limb defects (VACTERL) or VACTERL/Oculo-Auriculo-Vertebral Dysplasia (VACTERL/OAV) (22/148, 14%); EA with associated malformations including congenital heart defects, duodenal atresia, and diaphragmatic hernia without known associations or syndromes yet described (65/148, 44%). Altogether, the molecular diagnostic rate remains very low and may underlie frequent non-Mendelian genetic models.


Assuntos
Atresia Esofágica , Cardiopatias Congênitas , Deformidades Congênitas dos Membros , Fístula Traqueoesofágica , Recém-Nascido , Gravidez , Feminino , Humanos , Atresia Esofágica/diagnóstico , Atresia Esofágica/genética , Estudos Retrospectivos , Fístula Traqueoesofágica/genética , Deformidades Congênitas dos Membros/diagnóstico , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/complicações , Traqueia/anormalidades , Coluna Vertebral/anormalidades , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/complicações , Rim/anormalidades , Fatores de Alongamento de Peptídeos , Ribonucleoproteína Nuclear Pequena U5
3.
Front Immunol ; 13: 791522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154108

RESUMO

Ataxia-telangiectasia (A-T) is a neurodegenerative and primary immunodeficiency disorder (PID) characterized by cerebellar ataxia, oculocutaneous telangiectasia, immunodeficiency, progressive respiratory failure, and an increased risk of malignancies. It demands specialized care tailored to the individual patient's needs. Besides the classical ataxia-telangiectasia (classical A-T) phenotype, a variant phenotype (variant A-T) exists with partly overlapping but some distinctive disease characteristics. Here we present a case series of 6 patients with classical A-T and variant A-T, which illustrates the phenotypic variability of A-T that can present in childhood with prominent extrapyramidal features, with or without cerebellar ataxia. We report the clinical data, together with a detailed genotype description, immunological analyses, and related expression of the ATM protein. We show that the presence of some residual ATM kinase activity leads to the clinical phenotype variant A-T that differs from the classical A-T. Our data illustrate that the diagnosis of the variant form of A-T can be delayed and difficult, while early recognition of the variant form as well as the classical A-T is a prerequisite for providing a correct prognosis and appropriate rehabilitation and support, including the avoidance of diagnostic X-ray procedures, given the increased risk of malignancies and the higher risk for side effects of subsequent cancer treatment.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Ataxia Telangiectasia/diagnóstico , Ataxia Telangiectasia/genética , Transtornos dos Movimentos/diagnóstico , Mutação , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/genética , Adolescente , Adulto , Ataxia Telangiectasia/imunologia , Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Criança , Pré-Escolar , Estudos Transversais , Diagnóstico Tardio , Diagnóstico Diferencial , Feminino , Testes Genéticos/métodos , Genótipo , Humanos , Masculino , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/metabolismo , Fenótipo , Estudos Retrospectivos , Adulto Jovem
4.
Front Immunol ; 12: 773853, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003091

RESUMO

Rituximab (RTX) is an anti-CD20 monoclonal antibody that targets B cells-from the immature pre-B-cell stage in the bone marrow to mature circulating B cells-while preserving stem cells and plasma cells. It is used to treat autoimmune diseases, hematological malignancies, or complications after hematopoietic stem cell transplantation (HSCT). Its safety profile is acceptable; however, a subset of patients can develop persistent hypogammaglobulinemia and associated severe complications, especially in pediatric populations. We report the unrelated cases of two young men aged 17 and 22, presenting with persistent hypogammaglobulinemia more than 7 and 10 years after treatment with RTX, respectively, and administered after HSCT for hemolytic anemia and Epstein-Barr virus reactivation, respectively. Both patients' immunological workups showed low levels of total immunoglobulin, vaccine antibodies, and class switched-memory B cells but an increase in naive B cells, which can also be observed in primary immunodeficiencies such as those making up common variable immunodeficiency. Whole exome sequencing for one of the patients failed to detect a pathogenic variant causing a Mendelian immunological disorder. Annual assessments involving interruption of immunoglobulin replacement therapy each summer failed to demonstrate the recovery of endogenous immunoglobulin production or normal numbers of class switched-memory B cells 7 and 10 years after the patients' respective treatments with RTX. Although the factors that may lead to prolonged hypogammaglobulinemia after rituximab treatment (if necessary) remain unclear, a comprehensive immunological workup before treatment and long-term follow-up are mandatory to assess long-term complications, especially in children.


Assuntos
Agamaglobulinemia/diagnóstico , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Doença Enxerto-Hospedeiro/tratamento farmacológico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Rituximab/efeitos adversos , Adolescente , Agamaglobulinemia/sangue , Agamaglobulinemia/induzido quimicamente , Anemia Aplástica/imunologia , Anemia Aplástica/terapia , Infecções por Vírus Epstein-Barr/imunologia , Doença Enxerto-Hospedeiro/imunologia , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Fatores de Tempo , Adulto Jovem
6.
Am J Hum Genet ; 104(6): 1073-1087, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31079899

RESUMO

Cargo transport along the cytoplasmic microtubular network is essential for neuronal function, and cytoplasmic dynein-1 is an established molecular motor that is critical for neurogenesis and homeostasis. We performed whole-exome sequencing, homozygosity mapping, and chromosomal microarray studies in five individuals from three independent pedigrees and identified likely-pathogenic variants in DYNC1I2 (Dynein Cytoplasmic 1 Intermediate Chain 2), encoding a component of the cytoplasmic dynein 1 complex. In a consanguineous Pakistani family with three affected individuals presenting with microcephaly, severe intellectual disability, simplification of cerebral gyration, corpus callosum hypoplasia, and dysmorphic facial features, we identified a homozygous splice donor site variant (GenBank: NM_001378.2:c.607+1G>A). We report two additional individuals who have similar neurodevelopmental deficits and craniofacial features and harbor deleterious variants; one individual bears a c.740A>G (p.Tyr247Cys) change in trans with a 374 kb deletion encompassing DYNC1I2, and an unrelated individual harbors the compound-heterozygous variants c.868C>T (p.Gln290∗) and c.740A>G (p.Tyr247Cys). Zebrafish larvae subjected to CRISPR-Cas9 gene disruption or transient suppression of dync1i2a displayed significantly altered craniofacial patterning with concomitant reduction in head size. We monitored cell death and cell cycle progression in dync1i2a zebrafish models and observed significantly increased apoptosis, likely due to prolonged mitosis caused by abnormal spindle morphology, and this finding offers initial insights into the cellular basis of microcephaly. Additionally, complementation studies in zebrafish demonstrate that p.Tyr247Cys attenuates gene function, consistent with protein structural analysis. Our genetic and functional data indicate that DYNC1I2 dysfunction probably causes an autosomal-recessive microcephaly syndrome and highlight further the critical roles of the dynein-1 complex in neurodevelopment.


Assuntos
Anormalidades Craniofaciais/etiologia , Dineínas/genética , Deficiência Intelectual/etiologia , Malformações Arteriovenosas Intracranianas/etiologia , Microcefalia/etiologia , Mutação , Peixe-Zebra/crescimento & desenvolvimento , Adulto , Alelos , Sequência de Aminoácidos , Animais , Pré-Escolar , Anormalidades Craniofaciais/patologia , Dineínas/química , Dineínas/metabolismo , Exoma , Feminino , Homozigoto , Humanos , Lactente , Deficiência Intelectual/patologia , Malformações Arteriovenosas Intracranianas/patologia , Masculino , Microcefalia/patologia , Linhagem , Fenótipo , Conformação Proteica , Homologia de Sequência , Sequenciamento do Exoma , Adulto Jovem , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
7.
Am J Hum Genet ; 104(3): 422-438, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30773277

RESUMO

SPONASTRIME dysplasia is an autosomal-recessive spondyloepimetaphyseal dysplasia characterized by spine (spondylar) abnormalities, midface hypoplasia with a depressed nasal bridge, metaphyseal striations, and disproportionate short stature. Scoliosis, coxa vara, childhood cataracts, short dental roots, and hypogammaglobulinemia have also been reported in this disorder. Although an autosomal-recessive inheritance pattern has been hypothesized, pathogenic variants in a specific gene have not been discovered in individuals with SPONASTRIME dysplasia. Here, we identified bi-allelic variants in TONSL, which encodes the Tonsoku-like DNA repair protein, in nine subjects (from eight families) with SPONASTRIME dysplasia, and four subjects (from three families) with short stature of varied severity and spondylometaphyseal dysplasia with or without immunologic and hematologic abnormalities, but no definitive metaphyseal striations at diagnosis. The finding of early embryonic lethality in a Tonsl-/- murine model and the discovery of reduced length, spinal abnormalities, reduced numbers of neutrophils, and early lethality in a tonsl-/- zebrafish model both support the hypomorphic nature of the identified TONSL variants. Moreover, functional studies revealed increased amounts of spontaneous replication fork stalling and chromosomal aberrations, as well as fewer camptothecin (CPT)-induced RAD51 foci in subject-derived cell lines. Importantly, these cellular defects were rescued upon re-expression of wild-type (WT) TONSL; this rescue is consistent with the hypothesis that hypomorphic TONSL variants are pathogenic. Overall, our studies in humans, mice, zebrafish, and subject-derived cell lines confirm that pathogenic variants in TONSL impair DNA replication and homologous recombination-dependent repair processes, and they lead to a spectrum of skeletal dysplasia phenotypes with numerous extra-skeletal manifestations.


Assuntos
Instabilidade Cromossômica , Dano ao DNA , Variação Genética , Anormalidades Musculoesqueléticas/patologia , NF-kappa B/genética , Osteocondrodisplasias/patologia , Adolescente , Adulto , Alelos , Animais , Células Cultivadas , Criança , Pré-Escolar , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Estudos de Associação Genética , Humanos , Camundongos , Camundongos Knockout , Anormalidades Musculoesqueléticas/genética , Osteocondrodisplasias/genética , Sequenciamento do Exoma , Adulto Jovem , Peixe-Zebra
8.
J Pediatr Hematol Oncol ; 41(8): e521-e524, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30334905

RESUMO

Malignant or nonmalignant lymphoproliferative disorders together with repeated ear, nose, and throat infections should strongly motivate immunologic investigations. Indeed, we report a 7-year-old patient with a history of persistent abdominal symptoms along with recurrent ear, nose, and throat infections, who presented with intra-abdominal masses highly suggestive of a diagnostic of lymphoma, and who was diagnosed with activated-PI3K-delta syndrome, a recently described primary immunodeficiency prone to lymphoproliferation.


Assuntos
Linfoma/diagnóstico , Doenças da Imunodeficiência Primária/diagnóstico , Criança , Classe I de Fosfatidilinositol 3-Quinases , Diagnóstico Diferencial , Humanos , Linfoma/patologia , Masculino , Doenças da Imunodeficiência Primária/patologia
9.
Am J Hum Genet ; 103(4): 568-578, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30290152

RESUMO

Infantile and childhood-onset cataracts form a heterogeneous group of disorders; among the many genetic causes, numerous pathogenic variants in additional genes associated with autosomal-recessive infantile cataracts remain to be discovered. We identified three consanguineous families affected by bilateral infantile cataracts. Using exome sequencing, we found homozygous loss-of-function variants in DNMBP: nonsense variant c.811C>T (p.Arg271∗) in large family F385 (nine affected individuals; LOD score = 5.18 at θ = 0), frameshift deletion c.2947_2948del (p.Asp983∗) in family F372 (two affected individuals), and frameshift variant c.2852_2855del (p.Thr951Metfs∗41) in family F3 (one affected individual). The phenotypes of all affected individuals include infantile-onset cataracts. RNAi-mediated knockdown of the Drosophila ortholog still life (sif), enriched in lens-secreting cells, affects the development of these cells as well as the localization of E-cadherin, alters the distribution of septate junctions in adjacent cone cells, and leads to a ∼50% reduction in electroretinography amplitudes in young flies. DNMBP regulates the shape of tight junctions, which correspond to the septate junctions in invertebrates, as well as the assembly pattern of E-cadherin in human epithelial cells. E-cadherin has an important role in lens vesicle separation and lens epithelial cell survival in humans. We therefore conclude that DNMBP loss-of-function variants cause infantile-onset cataracts in humans.


Assuntos
Catarata/genética , Proteínas do Citoesqueleto/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Perda de Heterozigosidade/genética , Adulto , Alelos , Animais , Caderinas/genética , Criança , Drosophila/genética , Células Epiteliais/patologia , Exoma/genética , Feminino , Homozigoto , Humanos , Escore Lod , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Junções Íntimas/patologia
10.
Dev Med Child Neurol ; 60(1): 100-105, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29064093

RESUMO

In this case report we assess the occurrence of cortical malformations in children with early infantile epilepsy associated with variants of the gene protocadherin 19 (PCDH19). We describe the clinical course, and electrographic, imaging, genetic, and neuropathological features in a cohort of female children with pharmacoresistant epilepsy. All five children (mean age 10y) had an early onset of epilepsy during infancy and a predominance of fever sensitive seizures occurring in clusters. Cognitive impairment was noted in four out of five patients. Radiological evidence of cortical malformations was present in all cases and, in two patients, validated by histology. Sanger sequencing and Multiplex Ligation-dependent Probe Amplification analysis of PCDH19 revealed pathogenic variants in four patients. In one patient, array comparative genomic hybridization showed a microdeletion encompassing PCDH19. We propose molecular testing and analysis of PCDH19 in patients with pharmacoresistant epilepsy, with onset in early infancy, seizures in clusters, and fever sensitivity. Structural lesions are to be searched in patients with PCDH19 pathogenic variants. Further, PCDH19 analysis should be considered in epilepsy surgery evaluation even in the presence of cerebral structural lesions. WHAT THIS PAPER ADDS: Focal cortical malformations and monogenic epilepsy syndromes may coexist. Structural lesions are to be searched for in patients with protocadherin 19 (PCDH19) pathogenic variants with refractory focal seizures.


Assuntos
Caderinas/genética , Epilepsia , Malformações do Desenvolvimento Cortical , Adolescente , Criança , Pré-Escolar , Comorbidade , Epilepsia/epidemiologia , Epilepsia/genética , Epilepsia/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/epidemiologia , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/patologia , Protocaderinas
11.
Cerebellum ; 15(6): 829-831, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26607151

RESUMO

Progressive ataxia with palatal tremor (PAPT) is a syndrome caused by cerebellar and brainstem lesions involving the dentato-rubro-olivary tract and associated with hypertrophic olivary degeneration. Etiologies include acquired posterior fossa lesions (e.g. tumors, superficial siderosis, and inflammatory diseases) and genetic disorders, such as glial fibrillary acidic protein (GFAP) and polymerase gamma (POLG) mutations. We describe the case of a 52-year-old man who developed pure progressive ataxia and palatal tremor. Genetic analysis has shown that he is compound heterozygote for a known pathogenic (W748S) and a novel POLG variant (I1185N). Patients with POLG recessive mutations usually manifest a more complex clinical picture, including polyneuropathy and epilepsy; our case emphasizes the need to consider a genetic origin in a seemingly sporadic and pure PAPT.


Assuntos
Ataxia/genética , Doenças Cerebelares/genética , DNA Polimerase Dirigida por DNA/genética , Doenças Mitocondriais/genética , Mutação , Tremor/genética , Ataxia/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Doenças Cerebelares/diagnóstico por imagem , DNA Polimerase gama , Diagnóstico Diferencial , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/diagnóstico por imagem , Fenótipo , Síndrome , Tremor/diagnóstico por imagem
12.
Am J Hum Genet ; 96(3): 412-24, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25728776

RESUMO

Non-homologous end joining (NHEJ) is a key cellular process ensuring genome integrity. Mutations in several components of the NHEJ pathway have been identified, often associated with severe combined immunodeficiency (SCID), consistent with the requirement for NHEJ during V(D)J recombination to ensure diversity of the adaptive immune system. In contrast, we have recently found that biallelic mutations in LIG4 are a common cause of microcephalic primordial dwarfism (MPD), a phenotype characterized by prenatal-onset extreme global growth failure. Here we provide definitive molecular genetic evidence supported by biochemical, cellular, and immunological data for mutations in XRCC4, encoding the obligate binding partner of LIG4, causing MPD. We report the identification of biallelic mutations in XRCC4 in five families. Biochemical and cellular studies demonstrate that these alterations substantially decrease XRCC4 protein levels leading to reduced cellular ligase IV activity. Consequently, NHEJ-dependent repair of ionizing-radiation-induced DNA double-strand breaks is compromised in XRCC4 cells. Similarly, immunoglobulin junctional diversification is impaired in cells. However, immunoglobulin levels are normal, and individuals lack overt signs of immunodeficiency. Additionally, in contrast to individuals with LIG4 mutations, pancytopenia leading to bone marrow failure has not been observed. Hence, alterations that alter different NHEJ proteins give rise to a phenotypic spectrum, from SCID to extreme growth failure, with deficiencies in certain key components of this repair pathway predominantly exhibiting growth deficits, reflecting differential developmental requirements for NHEJ proteins to support growth and immune maturation.


Assuntos
Proteínas de Ligação a DNA/genética , Nanismo Hipofisário/genética , Nanismo/genética , Microcefalia/genética , Mutação , Alelos , Sequência de Aminoácidos , Criança , Pré-Escolar , Quebras de DNA de Cadeia Dupla , DNA Ligase Dependente de ATP , DNA Ligases/genética , DNA Ligases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Eletroforese em Gel de Campo Pulsado , Exoma , Fácies , Feminino , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Fenótipo , Conformação Proteica , Imunodeficiência Combinada Severa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA