Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Rev Cancer ; 1879(2): 189079, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280470

RESUMO

Angiogenesis is a crucial process for tissue development, repair, and tumor survival. Vascular endothelial growth factor (VEGF) is a key driver secreted by cancer cells, promoting neovascularization. While VEGF's role in angiogenesis is well-documented, its influence on the other aspects in tumor microenvironemt is less discussed. This review elaborates on VEGF's impact on intercellular interactions within the tumor microenvironment, including how VEGF affects pericyte proliferation and migration and mediates interactions between tumor-associated macrophages and cancer cells, resulting in PDL-1-mediated immunosuppression and Nrf2-mediated epithelial-mesenchymal transition. The review discusses VEGF's involvement in intra-organelle crosstalk, tumor metabolism, stemness, and epithelial-mesenchymal transition. It also provides insights into current anti-VEGF therapies and their limitations in cancer treatment. Overall, this review aims to provide a thorough overview of the current state of knowledge concerning VEGF signaling and its impact, not only on angiogenesis but also on various other oncogenic processes.


Assuntos
Angiogênese , Transdução de Sinais , Fatores de Crescimento do Endotélio Vascular , Humanos , Neoplasias/patologia , Microambiente Tumoral
2.
Cancer Lett ; 578: 216455, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865160

RESUMO

Ubiquitin-binding associated protein 2 (UBAP2) is reported to promote macropinocytosis and pancreatic adenocarcinoma (PDAC) growth, however, its role in normal pancreatic function remains unknown. We addressed this knowledge gap by generating UBAP2 knockout (U2KO) mice under a pancreas-specific Cre recombinase (Pdx1-Cre). Pancreatic architecture remained intact in U2KO animals, but they demonstrated slight glucose intolerance compared to controls. Upon cerulein challenge to induce pancreatitis, U2KO animals had reduced levels of several pancreatitis-relevant cytokines, amylase and lipase in the serum, reduced tissue damage, and lessened neutrophil infiltration into the pancreatic tissue. Mechanistically, cerulein-challenged U2KO animals revealed reduced NF-κB activation compared to controls. In vitro promoter binding studies confirmed the reduction of NF-κB binding to its target molecules supporting UBAP2 as a new regulator of inflammation in pancreatitis and may be exploited as a therapeutic target in future to inhibit pancreatitis.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Pancreatite , Camundongos , Animais , Ceruletídeo/efeitos adversos , NF-kappa B/metabolismo , Adenocarcinoma/patologia , Neoplasias Pancreáticas/induzido quimicamente , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/prevenção & controle , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/prevenção & controle , Pâncreas/patologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Glucose/metabolismo , Doença Aguda
3.
ACS Nano ; 17(10): 9326-9337, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37129853

RESUMO

The RAS-transformed cells utilize macropinocytosis to acquire amino acids to support their uncontrolled growth. However, targeting RAS to inhibit macropinocytosis remains a challenge. Here, we report that gold nanoparticles (GNP) inhibit macropinocytosis by decreasing KRAS activation. Using surface-modified and unmodified GNP, we showed that unmodified GNP specifically sequestered both wild-type and mutant KRAS and inhibited its activation, irrespective of growth factor stimulation, while surface-passivated GNP had no effect. Alteration of KRAS activation is reflected on downstream signaling cascades, macropinocytosis and tumor cell growth in vitro, and two independent preclinical human xenograft models of pancreatic cancer in vivo. The current study demonstrates NP-mediated inhibition of macropinocytosis and KRAS activation and provides translational opportunities to inhibit tumor growth in a number of cancers where activation of KRAS plays a major role.


Assuntos
Nanopartículas Metálicas , Neoplasias Pancreáticas , Humanos , Ouro/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Pinocitose , Neoplasias Pancreáticas/patologia , Proliferação de Células , Linhagem Celular Tumoral , Mutação
4.
Mater Today (Kidlington) ; 56: 79-95, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36188120

RESUMO

The tumor microenvironment (TME) plays a key role in the poor prognosis of many cancers. However, there is a knowledge gap concerning how multicellular communication among the critical players within the TME contributes to such poor outcomes. Using epithelial ovarian cancer (EOC) as a model, we show how crosstalk among cancer cells (CC), cancer associated fibroblasts (CAF), and endothelial cells (EC) promotes EOC growth. We demonstrate here that co-culturing CC with CAF and EC promotes CC proliferation, migration, and invasion in vitro and that co-implantation of the three cell types facilitates tumor growth in vivo. We further demonstrate that disruption of this multicellular crosstalk using a gold nanoparticle (GNP) inhibits these pro-tumorigenic phenotypes in vitro as well as tumor growth in vivo. Mechanistically, GNP treatment reduces expression of several tumor-promoting cytokines and growth factors, resulting in inhibition of MAPK and PI3K-AKT activation and epithelial-mesenchymal transition - three key oncogenic signaling pathways responsible for the aggressiveness of EOC. The current work highlights the importance of multicellular crosstalk within the TME and its role for the aggressive nature of EOC, and demonstrates the disruption of these multicellular communications by self-therapeutic GNP, thus providing new avenues to interrogate the crosstalk and identify key perpetrators responsible for poor prognosis of this intractable malignancy.

5.
Adv Sci (Weinh) ; 9(31): e2200491, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36104215

RESUMO

By exploiting the self-therapeutic properties of gold nanoparticles (GNPs) a molecular axis that promotes the growth of high-grade serous ovarian cancer (HGSOC), one of the deadliest gynecologic malignancies with poorly understood underlying molecular mechanisms, has been identified. The biodistribution and toxicity of GNPs administered by intravenous or intraperitoneal injection, both as a single dose or by repeated dosing over two weeks are first assessed; no biochemical or histological toxicity to vital organs is found. Using an orthotopic patient-derived xenograft (PDX) model of HGSOC, the authors then show that GNP treatment robustly inhibits tumor growth. Investigating the molecular mechanisms underlying the GNP efficacy reveals that GNPs downregulate insulin growth factor binding protein 2 (IGFBP2) by disrupting its autoregulation via the IGFBP2/mTOR/PTEN axis. This mechanism is validated by treating a cell line-based human xenograft tumor with GNPs and an mTOR dual-kinase inhibitor (PI-103), either individually or in combination with GNPs; GNP and PI-103 combination therapy inhibit ovarian tumor growth similarly to GNPs alone. This report illustrates how the self-therapeutic properties of GNPs can be exploited as a discovery tool to identify a critical signaling axis responsible for poor prognosis in ovarian cancer and provides an opportunity to interrogate the axis to improve patient outcomes.


Assuntos
Nanopartículas Metálicas , Neoplasias Ovarianas , Feminino , Humanos , Ouro/química , Insulina , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , PTEN Fosfo-Hidrolase , Distribuição Tecidual , Serina-Treonina Quinases TOR , Animais
6.
Cancers (Basel) ; 13(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802524

RESUMO

Gynecologic malignancies, which include cancers of the cervix, ovary, uterus, vulva, vagina, and fallopian tube, are among the leading causes of female mortality worldwide, with the most prevalent being endometrial, ovarian, and cervical cancer. Gynecologic malignancies are complex, heterogeneous diseases, and despite extensive research efforts, the molecular mechanisms underlying their development and pathology remain largely unclear. Currently, mechanistic and therapeutic research in cancer is largely focused on protein targets that are encoded by about 1% of the human genome. Our current understanding of 99% of the genome, which includes noncoding RNA, is limited. The discovery of tens of thousands of noncoding RNAs (ncRNAs), possessing either structural or regulatory functions, has fundamentally altered our understanding of genetics, physiology, pathophysiology, and disease treatment as they relate to gynecologic malignancies. In recent years, it has become clear that ncRNAs are relatively stable, and can serve as biomarkers for cancer diagnosis and prognosis, as well as guide therapy choices. Here we discuss the role of small non-coding RNAs, i.e., microRNAs (miRs), P-Element induced wimpy testis interacting (PIWI) RNAs (piRNAs), and tRNA-derived small RNAs in gynecological malignancies, specifically focusing on ovarian, endometrial, and cervical cancer.

7.
Cell Stress ; 4(11): 252-260, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-33150300

RESUMO

Uterine carcinosarcoma (UCS) is a relatively infrequent, but extremely aggressive endometrial malignancy. Although surgery and chemotherapy have improved outcomes, overall survival (OS) remains dismal due to the lack of targeted therapy and biphasic (epithelial and mesenchymal) nature that renders the tumor aggressive and difficult to manage. Here we report a role of transforming growth factor-ß (TGFß) in maintaining epithelial to mesenchymal transition (EMT) phenotype and aggressiveness in UCS. Using a 3D-culture system, we evaluated the efficacy of the transforming growth factor-ß receptor-I (TGFßR1) kinase inhibitor Galunisertib (GLT), alone and in combination with standard chemotherapeutic drugs used for the management of UCS. We demonstrate that GLT by inhibiting canonical and non-canonical signaling emanating from transforming growth factor-ß1 (TGFß1) reduces cellular viability, invasion, clonal growth and differentiation. Interestingly, GLT sensitizes UCS cells to chemotherapy both in vitro and in in vivo preclinical tumor model. Hence, targeting TGFß signaling, in combination with standard chemotherapy, may be exploited as an important strategy to manage the clinically challenging UCS.

8.
Sci Adv ; 6(27)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32937467

RESUMO

The stringent expression of the hypoxia inducible factor-1α (HIF-1α) is critical to a variety of pathophysiological conditions. We reveal that, in normoxia, enzymatic action of cystathionine ß-synthase (CBS) produces H2S, which persulfidates prolyl hydroxylase 2 (PHD2) at residues Cys21 and Cys33 (zinc finger motif), augmenting prolyl hydroxylase activity. Depleting endogenous H2S either by hypoxia or by inhibiting CBS via chemical or genetic means reduces persulfidation of PHD2 and inhibits activity, preventing hydroxylation of HIF-1α, resulting in stabilization. Our in vitro findings are further supported by the depletion of CBS in the zebrafish model that exhibits axis defects and abnormal intersegmental vessels. Exogenous H2S supplementation rescues both in vitro and in vivo phenotypes. We have identified the persulfidated residues and defined their functional significance in regulating the activity of PHD2 via point mutations. Thus, the CBS/H2S/PHD2 axis may provide therapeutic opportunities for pathologies associated with HIF-1α dysregulation in chronic diseases.


Assuntos
Cistationina beta-Sintase , Subunidade alfa do Fator 1 Induzível por Hipóxia , Prolina Dioxigenases do Fator Induzível por Hipóxia , Animais , Cistationina beta-Sintase/metabolismo , Sulfeto de Hidrogênio , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Peixe-Zebra/metabolismo
9.
EMBO Rep ; 21(10): e48483, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32851774

RESUMO

MICU1 is a mitochondrial inner membrane protein that inhibits mitochondrial calcium entry; elevated MICU1 expression is characteristic of many cancers, including ovarian cancer. MICU1 induces both glycolysis and chemoresistance and is associated with poor clinical outcomes. However, there are currently no available interventions to normalize aberrant MICU1 expression. Here, we demonstrate that microRNA-195-5p (miR-195) directly targets the 3' UTR of the MICU1 mRNA and represses MICU1 expression. Additionally, miR-195 is under-expressed in ovarian cancer cell lines, and restoring miR-195 expression reestablishes native MICU1 levels and the associated phenotypes. Stable expression of miR-195 in a human xenograft model of ovarian cancer significantly reduces tumor growth, increases tumor doubling times, and enhances overall survival. In conclusion, miR-195 controls MICU1 levels in ovarian cancer and could be exploited to normalize aberrant MICU1 expression, thus reversing both glycolysis and chemoresistance and consequently improving patient outcomes.


Assuntos
Proteínas de Transporte de Cátions , MicroRNAs , Neoplasias Ovarianas , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glicólise/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Neoplasias Ovarianas/genética
10.
FASEB J ; 34(9): 12024-12039, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32692445

RESUMO

Macropinocytosis supports the metabolic requirement of RAS-transformed pancreatic ductal adenocarcinoma cells (PDACs). However, regulators of RAS-transformation (activation) that lead to macropinocytosis have not been identified. Herein, we report that UBAP2 (ubiquitin-binding associated protein 2), regulates the activation of KRAS and macropinocytosis in pancreatic cancer. We demonstrate that UBAP2 is highly expressed in both pancreatic cancer cell lines and tumor tissues of PDAC patients. The expression of UBAP2 is associated with poor overall survival in several cancers, including PDAC. Silencing UBAP2 decreases the levels of activated KRAS, and inhibits macropinocytosis, and tumor growth in vivo. Using a UBAP2-deletion construct, we demonstrate that the UBA-domain of UBAP2 is critical for the regulation of macropinocytosis and maintaining the levels of activated KRAS. In addition, UBAP2 regulates RAS downstream signaling and helps maintain RAS in the GTP-bound form. However, the exact mechanism by which UBAP2 regulates KRAS activation is unknown and needs further investigation. Thus, UBAP2 may be exploited as a potential therapeutic target to inhibit macropinocytosis and tumor growth in activated KRAS-driven cancers.


Assuntos
Proteínas de Transporte/metabolismo , Neoplasias Pancreáticas/metabolismo , Pinocitose , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Ativação Enzimática , Inativação Gênica , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Domínios Proteicos , Proteínas Proto-Oncogênicas p21(ras)/genética
11.
FASEB J ; 34(7): 9372-9392, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32463541

RESUMO

Mutations in the human cystathionine beta synthase (CBS) gene are known to cause endothelial dysfunction responsible for cardiovascular and neurovascular diseases. CBS is the predominant hydrogen sulfide (H2 S)-producing enzyme in endothelial cells (ECs). Recently, H2 S was shown to attenuate ROS and improve mitochondrial function. Mitochondria are metabolic organelles that actively transform their ultrastructure to mediate their function. Therefore, we questioned whether perturbation of CBS/H2 S activity could drive mitochondrial dysfunction via mitochondrial dynamics in ECs. Here we demonstrate that silencing CBS induces mitochondria fragmentation, attenuates efficient oxidative phosphorylation, and decreases EC function. Mechanistically, CBS silencing significantly elevates ROS production, thereby leading to reduced mitofusin 2 (MFN2) expression, decouple endoplasmic reticulum-mitochondria contacts, increased mitochondria fission, enhanced receptor-mediated mitophagy, and increased EC death. These defects were significantly rescued by the treatment of H2 S donors. Taken together our data highlights a novel signaling axis that mechanistically links CBS with mitochondrial function and ER-mitochondrial tethering and could be considered as a new therapeutic approach for the intervention of EC dysfunction-related pathologies.


Assuntos
Cistationina beta-Sintase/metabolismo , Endotélio Vascular/fisiologia , Mitocôndrias/fisiologia , Dinâmica Mitocondrial , Mitofagia , Estresse Oxidativo , Células Cultivadas , Retículo Endoplasmático/metabolismo , Endotélio Vascular/citologia , Humanos , Transdução de Sinais
12.
FASEB J ; 34(2): 2287-2300, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908025

RESUMO

Using a systems biology approach to prioritize potential points of intervention in ovarian cancer, we identified the lysine rich coiled-coil 1 (KRCC1), as a potential target. High-grade serous ovarian cancer patient tumors and cells express significantly higher levels of KRCC1 which correlates with poor overall survival and chemoresistance. We demonstrate that KRCC1 is predominantly present in the chromatin-bound nuclear fraction, interacts with HDAC1, HDAC2, and with the serine-threonine phosphatase PP1CC. Silencing KRCC1 inhibits cellular plasticity, invasive properties, and potentiates apoptosis resulting in reduced tumor growth. These phenotypes are associated with increased acetylation of histones and with increased phosphorylation of H2AX and CHK1, suggesting the modulation of transcription and DNA damage that may be mediated by the action of HDAC and PP1CC, respectively. Hence, we address an urgent need to develop new targets in cancer.


Assuntos
Dano ao DNA , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Neoplasias , Neoplasias Ovarianas , Transcrição Gênica , Linhagem Celular Tumoral , Feminino , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Fosforilação , Fatores de Risco
13.
Bioconjug Chem ; 30(6): 1724-1733, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31067032

RESUMO

It is currently recognized that perpetual cross talk among key players in tumor microenvironment such as cancer cells (CCs), cancer associated fibroblasts (CAFs), and endothelial cells (ECs) plays a critical role in tumor progression, metastasis, and therapy resistance. Disruption of the cross talk may be useful to improve the outcome of therapeutics for which limited options are available. In the current study we investigate the use of gold nanoparticles (AuNPs) as a therapeutic tool to disrupt the multicellular cross talk within the TME cells with an emphasis on inhibiting angiogenesis. We demonstrate here that AuNPs disrupt signal transduction from TME cells (CCs, CAFs, and ECs) to ECs and inhibit angiogenic phenotypes in vitro. We show that conditioned media (CM) from ovarian CCs, CAFs, or ECs themselves induce tube formation and migration of ECs in vitro. Migration of ECs is also induced when ECs are cocultured with CCs, CAFs, or ECs. In contrast, CM from the cells treated with AuNPs or cocultured cells pretreated with AuNPs demonstrate diminished effects on ECs tube formation and migration. Mechanistically, AuNPs deplete ∼95% VEGF165 from VEGF single-protein solution and remove up to ∼45% of VEGF165 from CM, which is reflected on reduced activation of VEGF-Receptor 2 (VEGFR2) as compared to control CM. These results demonstrate that AuNPs inhibit angiogenesis via blockade of VEGF-VEGFR2 signaling from TME cells to endothelial cells.


Assuntos
Ouro/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Neovascularização Patológica/terapia , Neoplasias Ovarianas/terapia , Microambiente Tumoral , Movimento Celular , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Humanos , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Transdução de Sinais , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
14.
ACS Appl Mater Interfaces ; 11(29): 26060-26068, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31117437

RESUMO

Activated cancer-associated fibroblasts (CAFs) play a major role in the poor outcome in many diseases including pancreatic cancer. Normally quiescent with high lipid content and low proliferative capacity, CAFs receiving cues from cancer cells in the tumor microenvironment become activated and transformed into a lipid-deprived and highly proliferative myofibroblast type phenotype. Therefore, reversal of activated fibroblasts to the quiescence state is an important area of investigation that may help the therapeutic management of a number of diseases including pancreatic cancer. Here, we describe a unique biological function of gold nanoparticles (GNPs) and demonstrate that GNPs may be used to transform activated CAFs to quiescence and provide insights into the underlying molecular mechanisms. Using immortalized and primary patient derived CAFs, we demonstrate that GNPs enhanced lipid content in the cells by inducing expression of lipogenesis genes such as FASN, SREBP2, and FABP3. Using pharmacological inhibitors of lipolysis, lipophagy, and fatty acid oxidation, we further demonstrate that CAFs utilized a GNP-induced endogenously synthesized lipid to maintain the quiescent phenotype. Consequently, treatment with GNP sensitizes CAF to FASN inhibitor or FASN siRNA. Hence, GNPs may be used as a tool to probe mechanisms of quiescence in CAFs and help device strategies to target the stromal compartment exploiting the mechanisms of lipid utilization.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ouro , Nanopartículas Metálicas/química , Proteínas de Neoplasias/biossíntese , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Fibroblastos Associados a Câncer/patologia , Ouro/química , Ouro/farmacologia , Humanos , Neoplasias Pancreáticas/patologia
15.
FASEB J ; 32(8): 4145-4157, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29494264

RESUMO

Deregulation of mitochondrial morphogenesis, a dynamic equilibrium between mitochondrial fusion and fission processes, is now evolving as a key metabolic event that fuels tumor growth and therapy resistance. However, fundamental knowledge underpinning how cancer cells reprogram mitochondrial morphogenesis remains incomplete. Here, we report that cystathionine ß-synthase (CBS) reprograms mitochondrial morphogenesis in ovarian cancer (OvCa) cells by selectively regulating the stability of mitofusin 2 (MFN2). Clinically, high expression of both CBS and MFN2 implicates poor overall survival of OvCa patients, and a significant association between CBS and MFN2 expression exists in individual patients in the same data set. The silencing of CBS by small interfering RNA or inhibition of its catalytic activity by a small molecule inhibitor creates oxidative stress that activates JNK. Activated JNK phosphorylates MFN2 to recruit homologous to the E6-AP carboxyl terminus' domain-containing ubiquitin E3 ligase for its degradation via the ubiquitin-proteasome system. Supplementation with hydrogen sulfide or glutathione (the catalytic products of CBS enzymatic activity), anti-oxidants, or a JNK inhibitor restores MFN2 expression. In CBS-silenced orthotopic xenograft tumor tissues, MFN2 but not MFN1 is selectively downregulated. In summary, this report reveals a role for deregulated mitochondrial morphogenesis in OvCa, suggests one of the mechanisms for this deregulation, and provides a way to correct it through modulation of the metabolic enzyme CBS.-Chakraborty, P. K., Murphy, B., Mustafi, S. B., Dey, A., Xiong, X., Rao, G., Naz, S., Zhang, M., Yang, D., Dhanasekaran, D. N., Bhattacharya, R., Mukherjee, P. Cystathionine ß-synthase regulates mitochondrial morphogenesis in ovarian cancer.


Assuntos
Cistationina beta-Sintase/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Neoplasias Ovarianas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Regulação para Baixo/fisiologia , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Estresse Oxidativo/fisiologia
16.
Biochim Biophys Acta ; 1860(10): 2178-90, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27180173

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) inhibitor gefitinib (Iressa) is used for treating non-small cell lung cancer. Gefitinib also induces differentiation in acute myeloid leukemia (AML) cell lines and patient samples lacking EGFR by an unknown mechanism. Here we dissected the mechanism of gefitinib action responsible for its EGFR-independent effects. METHODS: Signaling events were analyzed by homogenous time-resolved fluorescence and immunoblotting. Cellular proliferation and differentiation were assessed by ATP measurement, trypan blue exclusion, 5-bromo-2'-deoxyuridine incorporation and flow-cytometry. Gefitinib and G protein-coupled receptor (GPCR) interactions were assessed by ß-arrestin recruitment, luciferase and radioligand competition assays. Role of histamine receptors (HR) in gefitinib actions were assessed by HR knockdown or pharmacological modulation. EGFR and HR interaction was assessed by co-immunoprecipitation. RESULTS: Gefitinib reduced cyclic AMP content in both AML and EGFR-expressing cells and induced ERK phosphorylation in AML cells. Dibutyryl-cAMP or PD98059 suppressed gefitinib-induced AML cell cytostasis and differentiation. Gefitinib bound to and modulated HRs with subtype selectivity. Pharmacological or genetic modulations of H2 and H4 HRs (H2R and H4R) not only suppressed gefitinib-induced cytostasis and differentiation of AML cells but also blocked EGFR and ERK1/2 inhibition in MDA-MB-231 cells. Moreover, in MDA-MB-231 cells gefitinib enhanced EGFR interaction with H4R that was blocked by H4R agonist 4-methyl histamine (4MH). CONCLUSION: HRs play critical roles in anti-cancer effects of gefitinib in both EGFR-deficient and EGFR-rich environments. GENERAL SIGNIFICANCE: We furnish fresh insights into gefitinib functions which may provide new molecular clues to its efficacy and safety issues.


Assuntos
Receptores ErbB/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Quinazolinas/administração & dosagem , Receptores Acoplados a Proteínas G/genética , Receptores Histamínicos H2/genética , Receptores Histamínicos/genética , Antineoplásicos/administração & dosagem , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , AMP Cíclico/metabolismo , Receptores ErbB/antagonistas & inibidores , Gefitinibe , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/biossíntese , Proteínas Proto-Oncogênicas c-akt/genética , Receptores Histamínicos/metabolismo , Receptores Histamínicos H2/metabolismo , Receptores Histamínicos H4
17.
J Inflamm (Lond) ; 12: 55, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26401121

RESUMO

BACKGROUND: Unresolved and prolonged inflammation is a pathological basis of many disorders such as cancer and multiple organ failure in shock. Interleukin-1 receptor (IL-1R) superfamily consists of IL-1R1 and pathogen pattern recognition receptor toll-like receptor-4 (TLR4) which, upon ligand binding, initiate pro-inflammatory signaling. The study objective was to investigate the effect of a diphenyldifluoroketone EF24 on the expression of IL-1R1 and TLR4 in lipopolysaccharide (LPS)-stimulated dendritic cells (DCs). METHODS: Immortalized murine bone marrow-derived JAWS II dendritic cells (DC) were challenged with LPS (100 ng/ml) for 4 h. The LPS-stimulated DCs were treated with 10 µM of EF24 for 1 h. The expression levels of IL-1R1 and TLR4 were monitored by RT-PCR, immunoblotting, and confocal microscopy. The effect of EF24 on the viability and cell cycle of DCs was examined by lactate dehydrogenase assay and flow cytometry, respectively. RESULTS: EF24 treatment suppressed the LPS-induced TLR4 and IL-1R1 expression in DCs. However, the expression levels of IL-1RA and IL-1R2 were not influenced by either LPS or EF24 treatments. These effects of EF24 were associated with a decrease in LPS-induced expression of phospho-NF-kB p65, indicative of its role in the transcriptional control of IL-1R superfamily members. We did not find any significant effect of EF24 on the proliferation or cell cycle of DCs. CONCLUSIONS: The results suggest that EF24 influences IL-1R superfamily signaling pathway in ways that could have salutary effects in inflammation. The pluripotent anti-inflammatory actions of EF24 warrant further investigation of EF24 in inflammatory conditions of systemic nature.

18.
Neuropharmacology ; 99: 318-27, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26232641

RESUMO

Maintenance of cerebral viability and function is an important goal of critical care in victims of injury due to ischemia and hypovolemia. As part of the multiple organ dysfunction syndrome, the brain function after trauma is influenced by the systemic inflammatory response. We investigated the effect of EF24, an anti-inflammatory bis-chalcone, on cerebral bioenergetics in a rat model of 45% hemorrhagic shock. The rats were treated with EF24 (0.4 mg/kg) or EF24 with an artificial oxygen carrier liposome-encapsulated hemoglobin (LEH). The volume of LEH administered was equal to the shed blood. The brain was collected after 6 h of shock for biochemical assays. EF24 treatment showed significant recovery of ATP, phosphocreatine, and NAD/NADH ratio. It also increased citrate synthase activity and cytochrome c oxidase subunit IV expression which were reduced in shock brain. Furthermore, it reduced the shock-induced accumulation of pyruvate and pyruvate dehydrogenase kinase-1 expression, suggesting that EF24 treatment improves cerebral energetics by restoring perturbed pyruvate metabolism in the mitochondria. These effects of EF24 were associated with reduced poly(ADP-ribose) polymerase cleavage and a significant improvement in the levels of nerve growth factor and brain-derived neurotrophic factor in shock brain. Co-administration of LEH with EF24 was only marginally more effective as compared to the treatment with EF24 alone. These results show that EF24 treatment sets up a pro-survival phenotype in shock by resurrecting cerebral bioenergetics. Since EF24 was effective in the absence of accompanying fluid resuscitation, it has potential utility as a pre-hospital pharmacotherapy in shock due to accidental blood loss.


Assuntos
Compostos de Benzilideno/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fármacos Neuroprotetores/farmacologia , Piperidonas/farmacologia , Choque Hemorrágico/tratamento farmacológico , Choque Hemorrágico/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NAD/metabolismo , Fator de Crescimento Neural/metabolismo , Fosfocreatina/metabolismo , Ácido Pirúvico/metabolismo , Ratos Sprague-Dawley
19.
J Cereb Blood Flow Metab ; 35(9): 1528-36, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25944591

RESUMO

We examined the effect of resuscitation with liposome-encapsulated hemoglobin (LEH) on cerebral bioenergetics in a rat model of 45% hypovolemia. The rats were resuscitated with isovolemic LEH or saline after 15 minutes of shock and followed up to 6 hours. Untreated hypovolemic rats received no fluid. The cerebral uptake of F-18-fluorodeoxyglucose (FDG) was measured by PET, and at 6 hours, the brain was collected for various assays. Hypovolemia decreased cellular adenosine triphosphate (ATP), phosphocreatine, nicotinamide adenine dinucleotide (NAD)/NADH ratio, citrate synthase activity, glucose-6-phosphate, and nerve growth factor (NGF), even when FDG uptake remained unchanged. The FDG uptake was reduced by saline, but not by LEH infusion. The reduced FDG uptake in saline group was associated with a decrease in hexokinase I expression. The LEH infusion effectively restored ATP content, NAD/NADH ratio, and NGF expression, and reduced the hypovolemia-induced accumulation of pyruvate and ubiquitinated proteins; in comparison, saline was significantly less effective. The LEH infusion was associated with low pH and high anion gap, indicating anionic gap acidosis. The results suggest that hypovolemic shock perturbs glucose metabolism at the level of pyruvate utilization, resulting in deranged cerebral energy stores. The correction of volume and oxygen deficits by LEH recovers the cerebral metabolism and creates a prosurvival phenotype.


Assuntos
Substitutos Sanguíneos/farmacologia , Encéfalo/metabolismo , Hemoglobinas/farmacologia , Ressuscitação , Choque , Trifosfato de Adenosina/metabolismo , Animais , Encéfalo/patologia , Citrato (si)-Sintase/metabolismo , Modelos Animais de Doenças , Glucose-6-Fosfato/metabolismo , Hexoquinase/metabolismo , Lipossomos , Masculino , NAD/metabolismo , Fator de Crescimento Neural/metabolismo , Ácido Pirúvico/metabolismo , Ratos , Ratos Sprague-Dawley , Choque/tratamento farmacológico , Choque/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-30761219

RESUMO

Cellular proteostasis is a highly dynamic process and is primarily carried out by the degradation tools of ubiquitin-proteasome system (UPS). Abnormalities in UPS function result in the accumulation of damaged or misfolded proteins which can form intra- and extracellular aggregated proteinaceous deposits leading to cellular dysfunction and/or death. Deposition of abnormal protein aggregates and the cellular inability to clear them have been implicated in the pathogenesis of a number of neurodegenerative disorders such as Alzheimer's and Parkinson's. Contrary to the upregulation of proteasome function in oncogenesis and the use of proteasome inhibition as a therapeutic strategy, activation of proteasome function would serve therapeutic objectives of treatment of neurodegenerative diseases. This review describes the current understanding of the role of the proteasome in neurodegenerative disorders and potential utility of proteasomal modulation therein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA