Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 72(18): 6437-6446, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34185065

RESUMO

BRASSINAZOLE RESISTANT (BZR) transcription factors are critical components of the brassinosteroid signalling pathway, but their possible roles in fruit ripening have rarely been reported. In this study, four BZR sequences were isolated from persimmon fruit. Among the four BZR genes, DkBZR1/2 were expressed in persimmon fruit; DkBZR1 protein amount decreased and dephosphorylated DkBZR2 gradually accumulated during the storage period. DkBZR1/2 proteins were localized in both the nucleus and cytoplasm and accumulated in the nucleus after 24-epibrassinolide treatment. DkBZR1 suppressed the transcription of Diospyros kaki endo-1,4-betaglucanase 1 (DkEGase1) and 1-aminocyclopropane-1-carboxylate synthase 1 (DkACS1) by binding to the BR response element (BRRE) in their promoters, and DkBZR2 activated the transcription of pectate lyase 1 (DkPL1) and 1-aminocyclopropane-1-carboxylate oxidase 2 (DkACO2) by binding to the E-box motif in their promoters. Transient overexpression of DkBZR2 promoted the conversion of acid-soluble pectin to water-soluble pectin and increased ethylene production in persimmon fruit. Our findings indicate that DkBZR1 and DkBZR2 serve as repressors and activators of persimmon fruit ripening, respectively.


Assuntos
Diospyros , Parede Celular/metabolismo , Diospyros/genética , Diospyros/metabolismo , Etilenos , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
J Agric Food Chem ; 66(51): 13473-13482, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30512945

RESUMO

Organic acid is an important indicator of fruit quality, and malate is the predominant organic acid in apple fruit. However, the regulation of malate metabolism in postharvest fruit is rarely reported. Here, we found that, compared with a control treatment, a 10 mM γ-aminobutyric acid (GABA) treatment remarkably delayed the loss of tiftratable acidity and malate and increased the succinate and oxalate contents in "Cripps Pink" fruit stored in polyethylene bags at room temperature. The higher malate levels in GABA-treated fruit were accompanied by higher activities of cytosolic nicotinamide adenine dinucleotide-dependent malate dehydrogenase (cyNAD-MDH) and phosphoenolpyruvate carboxylase (PEPC) but lower cytosolic NAD phosphate-dependent malic enzyme (cyNADP-ME) and phosphoenolpyruvate carboxykinase (PEPCK) activities than those seen in control fruit. Notably, ethylene production was significantly reduced by GABA treatment, paralleling the downregulation of MdACS, MdACO, and MdERF expression. Meanwhile, GABA treatment also enhanced the activity of the GABA shunt and promoted the accumulation of GABA. This study provides new insights into the regulation of malate metabolism and reports for the first time the possible interplay between GABA and ethylene signaling pathways in apple fruit during postharvest storage.


Assuntos
Etilenos/biossíntese , Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Frutas/efeitos dos fármacos , Malatos/metabolismo , Ácido gama-Aminobutírico/farmacologia , Frutas/enzimologia , Frutas/genética , Frutas/metabolismo , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Malus/efeitos dos fármacos , Malus/enzimologia , Malus/genética , Malus/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
PLoS One ; 11(9): e0162159, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27607076

RESUMO

We investigated the effects of different concentrations (0, 1, 2 and 4 mM) of putrescine on chilling injury, fruit quality, ethylene production rate, fatty acid composition and the antioxidant system of cold-stored kiwifruit (Actinidia chinensis Planch. var. chinensis 'Hongyang'). We achieved a significant decrease in ethylene production, maintained fruit quality and alleviated chilling injury during storage via treatment with 2 mM putrescine. Furthermore, putrescine treatment inhibited increases in superoxide anion production rate and H2O2 concentration, while maintaining higher membrane lipid unsaturation as well as increased activities of superoxide dismutase and catalase. In addition, putrescine treatment enhanced the activities of antioxidant enzymes related to the ascorbate-glutathione cycle while causing higher levels of ascorbic acid and reduced glutathione. Our results suggest that induced tolerance against chilling injury via putrescine treatment in cold-stored kiwifruit may be due to enhanced antioxidant activity, increased unsaturation of membrane lipids, and inhibited ethylene production.


Assuntos
Actinidia/fisiologia , Antioxidantes/metabolismo , Temperatura Baixa , Ácidos Graxos/análise , Putrescina/farmacologia , Actinidia/efeitos dos fármacos , Actinidia/enzimologia , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Etilenos/biossíntese , Frutas/efeitos dos fármacos , Frutas/enzimologia , Frutas/fisiologia , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Análise de Componente Principal , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
4.
J Sci Food Agric ; 93(15): 3691-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23633231

RESUMO

BACKGROUND: To understand the mechanisms leading to the enhanced chilling tolerance of kiwifruit by low-temperature conditioning (LTC, 12 °C for 3 days), this study investigated the effect of LTC on chilling tolerance and changes in antioxidant enzyme activities and endogenous hormones. RESULTS: LTC significantly alleviated chilling injury in kiwifruit. Fruits treated with LTC maintained lower respiration and ethylene production and higher firmness. Furthermore, this treatment inhibited the accumulation of malondialdehyde, superoxide radicals and hydrogen peroxide and the increase in membrane permeability and increased the activities of superoxide dismutase, catalase, ascorbate peroxidase and peroxidase under chilling stress. The treatment also maintained higher levels of endogenous abscisic acid (ABA), indole-3-acetic acid (IAA) and zeatin riboside (ZR), lower gibberellic acid (GA3) levels and higher ABA/GA3 and ABA/IAA ratios. CONCLUSION: The results suggested that LTC alleviated chilling injury in kiwifruit by improving antioxidant enzyme activities and maintaining higher levels of endogenous ABA, IAA and ZR, lower GA3 levels and higher ABA/GA3 and ABA/IAA ratios.


Assuntos
Actinidia/metabolismo , Adaptação Fisiológica , Antioxidantes/metabolismo , Temperatura Baixa , Frutas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Actinidia/enzimologia , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Permeabilidade da Membrana Celular , Respiração Celular , Frutas/enzimologia , Dureza , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
5.
Food Chem ; 138(1): 471-7, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23265513

RESUMO

Xyloglucan endotransglucosylase/hydrolase (XTH) is thought to contribute to fruit softening by degrading xyloglucan that is a predominant hemicellulose in the cell wall. In this study, two full-length XTH genes (DKXTH1 and DKXTH2) were identified from 'Fupingjianshi' persimmon fruit, and the expression level of both XTH genes was investigated during softening for 18-24 d using RT-qPCR. Sequence analysis showed that DKXTH1 and DKXTH2 contained a putative open reading frame of 861 and 876 bp encoding polypeptides of 287 and 292 amino acid residues, respectively, which contained the conserved DEIDFEFLG motif of XTH, a potential N-linked glycosylation signal site. RT-qPCR analysis showed that DKXTH1 and DKXTH2 in untreated fruit had different expression patterns during fruit softening, in which maximum expression occurred on days 3 and 12 of ripening, respectively. 1-Methylcyclopropene (1-MCP) and gibberellic acid (GA(3)) treatments delayed the softening and ethylene peak of persimmon fruit, as well as suppressed the expression of both XTH genes, especially DKXTH1. These results indicated that the expression of both XTH genes might be ethylene dependent action, and closely related to softening of persimmon in the early (DKXTH1) and later (DKXTH2) ripening stages.


Assuntos
Ciclopropanos/farmacologia , Diospyros/enzimologia , Frutas/enzimologia , Giberelinas/farmacologia , Glicosiltransferases/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Diospyros/efeitos dos fármacos , Diospyros/genética , Diospyros/crescimento & desenvolvimento , Armazenamento de Alimentos , Frutas/efeitos dos fármacos , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glicosiltransferases/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA