Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Genet ; 59(10): 984-992, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34916228

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a genetic heart muscle disease with preserved or increased ejection fraction in the absence of secondary causes. Mutations in the sarcomeric protein-encoding genes predominantly cause HCM. However, relatively little is known about the genetic impact of signalling proteins on HCM. METHODS AND RESULTS: Here, using exome and targeted sequencing methods, we analysed two independent cohorts comprising 401 Indian patients with HCM and 3521 Indian controls. We identified novel variants in ribosomal protein S6 kinase beta-1 (RPS6KB1 or S6K1) gene in two unrelated Indian families as a potential candidate gene for HCM. The two unrelated HCM families had the same heterozygous missense S6K1 variant (p.G47W). In a replication association study, we identified two S6K1 heterozygotes variants (p.Q49K and p.Y62H) in the UK Biobank cardiomyopathy cohort (n=190) compared with matched controls (n=16 479). These variants are neither detected in region-specific controls nor in the human population genome data. Additionally, we observed an S6K1 variant (p.P445S) in an Arab patient with HCM. Functional consequences were evaluated using representative S6K1 mutated proteins compared with wild type in cellular models. The mutated proteins activated the S6K1 and hyperphosphorylated the rpS6 and ERK1/2 signalling cascades, suggesting a gain-of-function effect. CONCLUSIONS: Our study demonstrates for the first time that the variants in the S6K1 gene are associated with HCM, and early detection of the S6K1 variant carriers can help to identify family members at risk and subsequent preventive measures. Further screening in patients with HCM with different ethnic populations will establish the specificity and frequency of S6K1 gene variants.


Assuntos
Cardiomiopatia Hipertrófica , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Cardiomiopatias/genética , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/genética , Exoma , Heterozigoto , Humanos , Mutação , Proteínas Quinases S6 Ribossômicas/genética
2.
Oncotarget ; 10(38): 3709-3724, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31217904

RESUMO

Coactivator associated arginine methyltransferase 1 (CARM1) has been functionally implicated in maintenance of pluripotency, cellular differentiation and tumorigenesis; where it plays regulatory roles by virtue of its ability to coactivate transcription as well as to modulate protein function as an arginine methyltransferase. Previous studies establish an oncogenic function of CARM1 in the context of colorectal and breast cancer, which correlate to its overexpressed condition. However, the mechanism behind its deregulated expression in the context of cancer has not been addressed before. In the present study we uncover an oncogenic function of CARM1 in the context of oral cancer, where it was found to be overexpressed. We also identify YY1 to be a positive regulator of CARM1 gene promoter, where silencing of YY1 in oral cancer cell line could lead to reduction in expression of CARM1. In this context, YY1 showed concomitant overexpression in oral cancer patient samples compared to adjacent normal tissue. Cell line based experiments as well as xenograft study revealed pro-neoplastic functions of YY1 in oral cancer. Transcriptomics analysis as well as qRT-PCR validation clearly indicated pro-proliferative, pro-angiogenic and pro-metastatic role of YY1 in oral cancer. We also show that YY1 is a substrate of CARM1 mediated arginine methylation, where the latter could coactivate YY1 mediated reporter gene activation in vivo. Taken together, CARM1 and YY1 were found to regulate each other in a positive feedback loop to facilitate oral cancer progression.

3.
J Biosci ; 44(6)2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31894128

RESUMO

The Aurora kinases represent a group of serine/threonine kinases which are crucial regulators of mitosis. Dysregulated Aurora kinase B (AurkB) expression, stemming from genomic amplification, increased gene transcription or overexpression of its allosteric activators, is capable of initiating and sustaining malignant phenotypes. Although AurkB level in cells is well-orchestrated, studies that relate to its stability or activity, independent of mitosis, are lacking. We report that AurkB undergoes acetylation in vitro by lysine acetyltransferases (KATs) belonging to different families, namely by p300 and Tip60. The haploinsufficient tumor suppressor Tip60 acetylates two highly conserved lysine residues within the kinase domain of AurkB which not only impinges the protein stability but also its kinase activity. These results signify a probable outcome on the increase in "overall activity" of AurkB upon Tip60 downregulation, as observed under cancerous conditions. The present work, therefore, uncovers an important functional interplay between AurkB and Tip60, frailty of which may be an initial event in carcinogenesis.


Assuntos
Aurora Quinase B/genética , Lisina Acetiltransferase 5/genética , Mitose/genética , Neoplasias/genética , Acetilação , Carcinogênese/genética , Proteína p300 Associada a E1A/genética , Haploinsuficiência/genética , Humanos , Lisina Acetiltransferases/genética , Neoplasias/patologia , Fosforilação/genética
4.
FASEB J ; 33(1): 219-230, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29995440

RESUMO

Aurora kinases are critical mitotic serine/threonine kinases and are often implicated in tumorigenesis. Recent studies of the interphase functions for aurora kinase (Aurk)A have considerably expanded our understanding of its role beyond mitosis. To identify the unknown targets of AurkA, we used peptide array-based screening and found E2F4 to be a novel substrate. Phosphorylation of E2F4 by AurkA at Ser75 regulates its DNA binding and subcellular localization. Because E2F4 plays an important role in skeletal muscle differentiation, we attempted to gain insight into E2F4 phosphorylation in this context. We observed that a block in E2F4 phosphorylation retained it better within the nucleus and inhibited muscle differentiation. RNA sequencing analysis revealed a perturbation of the gene network involved in the process of muscle differentiation and mitochondrial biogenesis. Collectively, our findings establish a novel role of AurkA in the process of skeletal muscle differentiation.-Dhanasekaran, K., Bose, A., Rao, V. J., Boopathi, R., Shankar, S. R., Rao, V. K., Swaminathan, A., Vasudevan, M., Taneja, R., Kundu, T. K. Unravelling the role of aurora A beyond centrosomes and spindle assembly: implications in muscle differentiation.


Assuntos
Aurora Quinase A/metabolismo , Diferenciação Celular , Centrossomo/metabolismo , Fator de Transcrição E2F4/metabolismo , Músculo Esquelético/citologia , Mioblastos/citologia , Fuso Acromático/metabolismo , Animais , Aurora Quinase A/genética , Ciclo Celular , Células Cultivadas , Fator de Transcrição E2F4/genética , Células HEK293 , Humanos , Camundongos , Mitose , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA