Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 236(11): 7745-7758, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34061983

RESUMO

The biosynthesis of many of the peptides involved in homeostatic control requires peptidylglycine α-amidating monooxygenase (PAM), an ancient, highly conserved copper- and ascorbate-dependent enzyme. Using the production of amidated chromogranin A to monitor PAM function in tumor cells, physiologically relevant levels of hypoxia were shown to inhibit this monooxygenase. The ability of primary pituitary cells exposed to hypoxic conditions for 4 h to produce amidated chromogranin A was similarly inhibited. The affinity of the purified monooxygenase for oxygen (Km = 99 ± 19 µM) was consistent with this result. The ability of PAM to alter secretory pathway behavior under normoxic conditions required its monooxygenase activity. Under normoxic conditions, hypoxia-inducible factor 1a levels in dense cultures of corticotrope tumor cells expressing high levels of PAM exceeded those in control cells; expression of inactive monooxygenase did not have this effect. The effects of hypoxia on levels of two PAM-regulated genes (activating transcription factor 3 [Atf3] and FK506 binding protein 2 [Fkbp2]) differed in cells expressing high versus low levels of PAM. Putative hypoxia response elements occur in both human and mouse PAM, and hPAM has consistently been identified as one of the genes upregulated in response to hypoxia. Expression of PAM is also known to alter gene expression. A quarter of the genes consistently upregulated in response to hypoxia were downregulated following increased expression of PAM. Taken together, our data suggest roles for PAM and amidated peptide secretion in the coordination of tissue-specific responses to hypoxia.


Assuntos
Cromogranina A/metabolismo , Oxigenases de Função Mista/metabolismo , Complexos Multienzimáticos/metabolismo , Adeno-Hipófise/enzimologia , Neoplasias Hipofisárias/enzimologia , Hipóxia Tumoral , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Amidina-Liases/genética , Amidina-Liases/metabolismo , Animais , Linhagem Celular Tumoral , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Oxigenases de Função Mista/genética , Complexos Multienzimáticos/genética , Adeno-Hipófise/patologia , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , Ratos , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
2.
J Cell Physiol ; 234(6): 8683-8697, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30317586

RESUMO

The biosynthetic and endocytic pathways of secretory cells are characterized by progressive luminal acidification, a process which is crucial for posttranslational modifications and membrane trafficking. This progressive fall in luminal pH is mainly achieved by the vacuolar-type-H+ ATPase (V-ATPase). V-ATPases are large, evolutionarily ancient rotary proton pumps that consist of a peripheral V1 complex, which hydrolyzes ATP, and an integral membrane V0 complex, which transports protons from the cytosol into the lumen. Upon sensing the desired luminal pH, V-ATPase activity is regulated by reversible dissociation of the complex into its V1 and V0 components. Molecular details of how intraluminal pH is sensed and transmitted to the cytosol are not fully understood. Peptidylglycine α-amidating mono-oxygenase (PAM; EC 1.14.17.3), a secretory pathway membrane enzyme which shares similar topology with two V-ATPase accessory proteins (Ac45 and prorenin receptor), has a pH-sensitive luminal linker region. Immunofluorescence and sucrose gradient analysis of peptidergic cells (AtT-20) identified distinct subcellular compartments exhibiting spatial co-occurrence of PAM and V-ATPase. In vitro binding assays demonstrated direct binding of the cytosolic domain of PAM to V1H. Blue native PAGE identified heterogeneous high-molecular weight complexes of PAM and V-ATPase. A PAM-1 mutant (PAM-1/H3A) with altered pH sensitivity had diminished ability to form high-molecular weight complexes. In addition, V-ATPase assembly status was altered in PAM-1/H3A expressing cells. Our analysis of the secretory and endocytic pathways of peptidergic cells supports the hypothesis that PAM serves as a luminal pH-sensor, regulating V-ATPase action by altering its assembly status.


Assuntos
Endocitose , Oxigenases de Função Mista/metabolismo , Complexos Multienzimáticos/metabolismo , Células Neuroendócrinas/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Receptores de Superfície Celular/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Linhagem Celular , Feminino , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxigenases de Função Mista/genética , Complexos Multienzimáticos/genética , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , ATPases Translocadoras de Prótons/genética , Receptores de Superfície Celular/genética , Via Secretória , Transdução de Sinais , Relação Estrutura-Atividade , ATPases Vacuolares Próton-Translocadoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA