Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(17): e37097, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39281486

RESUMO

Background: The prevalence of chronic hepatitis B virus (HBV) poses a significant threat to the lives of 257 million individuals globally, potentially resulting in severe outcomes such as liver cirrhosis or hepatocellular carcinoma. Among the existing preventive measures, yeast-derived vaccines have proven to be the most efficacious approach in combatting hepatitis B. Nonetheless, as scientific inquiries focus more on occult HBV infection (OBI) in vaccinated persons and the lingering risk of vertical transmission affecting 10-30 % of babies born to HBsAg-positive mothers, there is a growing apprehension regarding the inability of HBV vaccines to ensure complete immunity. This study aims to offer a more comprehensive understanding of the implications of widespread HBV vaccination initiatives on OBI while tackling the primary limitations associated with current vaccine formulations. Methods: The exploration was conducted on PubMed, Scopus, and Web of Science databases to pinpoint research on OBI within vaccinated cohorts. A sum of 76 suitable studies was recognized. Discussion: Multiple studies have documented the occurrence of OBI in fully vaccinated individuals, including both the general population and high-risk groups, such as newborns born to HBsAg-positive mothers. Factors contributing to vaccine failures include low-level anti-HBs antibodies, high maternal viral loads in mother-to-child transmission cases, as well as the presence of vaccine escape mutants and heterologous HBV genotypes. However, further research is needed to precisely understand the impact of active immunization on the emergence of OBI in vaccinated populations. Nonetheless, it is apparent that the advancement of more effective HBV vaccines could potentially lead to the extinction of HBV.

2.
Microrna ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39005129

RESUMO

Cancer, the second greatest cause of mortality worldwide, frequently causes bone me-tastases in patients with advanced-stage carcinomas such as prostate, breast, and lung cancer. The existence of these metastases contributes to the occurrence of skeletal-related events (SREs), which are defined by excessive pain, pathological fractures, hypercalcemia, and spinal cord com-pression. These injurious incidents leave uncomfortably large holes in each of the cancer patient's life quality. Primary bone cancers, including osteosarcoma (OS), chondrosarcoma (CS), and Ewing's sarcoma (ES), have unclear origins. MicroRNA (miRNA) expression patterns have been changed in primary bone cancers such as OS, CS, and ES, indicating a role in tumor development, invasion, metastasis, and treatment response. These miRNAs are persistent in circulation and ex-hibit distinct patterns in many forms of bone tumors, making them potential biomarkers for early detection and treatment of such diseases. Given their crucial regulatory functions in various bio-logical processes and conditions, including cancer, this study aims to look at miRNAs' activities and possible contributions to bone malignancies, focusing on OS, CS, and ES. In conclusion, miRNAs are valuable tools for diagnosing, monitoring, and predicting OS, CS, and ES outcomes. Further research is required to fully comprehend the intricate involvement of miRNAs in these bone cancers and to develop effective miRNA-based treatments.

3.
Am J Stem Cells ; 13(2): 87-100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765803

RESUMO

Diabetes mellitus (DM) is a significant public health problem and is one of the most challenging medical conditions worldwide. It is the severe complications that make this disease more intricate. A diabetic wound is one of these complications. Patients with diabetes are at higher risk of developing diabetic foot ulcers (DFU). Due to the ineffectiveness of Conventional treatments, growth in limb amputation, morbidity, and mortality have been recognized, which indicates the need for additional treatment. Mesenchymal stem cells (MSCs) can significantly improve wound healing. However, there are some risks related to stem cell therapy. Exosome therapy is a new treatment option for diabetic wounds that has shown promising results. However, an even more advanced form called cell-free therapy using exosomes has emerged. This upgraded version of stem cell therapy offers improved efficacy and eliminates the risk of cancer progression. Exosome therapy promotes wound healing from multiple angles, unlike traditional methods that primarily rely on the body's self-healing ability and only provide wound protection. Therefore, exosome therapy has the potential to replace conventional treatments effectively. However, further research is necessary to distinguish the optimal type of stem cells for therapy, ensure their safety, establish appropriate dosing, and identify the best management trail. The present study focused on the current literature on diabetic wound ulcers, their treatment, and mesenchymal stem cell and exosome therapy potential in DFU.

4.
J Transl Med ; 22(1): 435, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720379

RESUMO

Diabetes mellitus is a significant global public health challenge, with a rising prevalence and associated morbidity and mortality. Cell therapy has evolved over time and holds great potential in diabetes treatment. In the present review, we discussed the recent progresses in cell-based therapies for diabetes that provides an overview of islet and stem cell transplantation technologies used in clinical settings, highlighting their strengths and limitations. We also discussed immunomodulatory strategies employed in cell therapies. Therefore, this review highlights key progresses that pave the way to design transformative treatments to improve the life quality among diabetic patients.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Diabetes Mellitus , Transplante de Células-Tronco , Humanos , Diabetes Mellitus/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Transplante das Ilhotas Pancreáticas , Animais
5.
Mol Biol Rep ; 51(1): 459, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551743

RESUMO

Hepatitis is a significant global public health concern, with viral infections being the most common cause of liver inflammation. Antiviral medications are the primary treatments used to suppress the virus and prevent liver damage. However, the high cost of these drugs and the lack of awareness and stigma surrounding the disease create challenges in managing hepatitis. Stem cell therapy has arisen as a promising therapeutic strategy for hepatitis by virtue of its regenerative and immunomodulatory characteristics. Stem cells have the exceptional capacity to develop into numerous cell types and facilitate tissue regeneration, rendering them a highly promising therapeutic avenue for hepatitis. In animal models, stem cell therapy has demonstrated worthy results by reducing liver inflammation and improving liver function. Furthermore, clinical trials have been undertaken to assess the safety and effectiveness of stem cell therapy in individuals with hepatitis. This review aims to explore the involvement of stem cells in treating hepatitis and highlight the findings from studies conducted on both animals and humans. The objective of this review is to primarily concentrate on the ongoing and future clinical trials that assess the application of stem cell therapy in the context of hepatitis, including the transplantation of autologous bone marrow-derived stem cells, human induced pluripotent stem cells, and other mesenchymal stem cells. In addition, this review will explore the potential merits and constraints linked to stem cell therapy for hepatitis, as well as its prospective implications in the management of this disease.


Assuntos
Hepatite , Células-Tronco Pluripotentes Induzidas , Transplante de Células-Tronco Mesenquimais , Animais , Humanos , Estudos Prospectivos , Transplante de Células-Tronco Mesenquimais/métodos , Inflamação
6.
Stem Cell Rev Rep ; 20(5): 1200-1212, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38430362

RESUMO

Epidermolysis bullosa (EB) is a rare genetic dermatosis characterized by skin fragility and blister formation. With a wide phenotypic spectrum and potential extracutaneous manifestations, EB poses significant morbidity and mortality risks. Currently classified into four main subtypes based on the level of skin cleavage, EB is caused by genetic mutations affecting proteins crucial for maintaining skin integrity. The management of EB primarily focuses on preventing complications and treating symptoms through wound care, pain management, and other supportive measures. However, recent advancements in the fields of stem cell therapy, tissue engineering, and gene therapy have shown promise as potential treatments for EB. Stem cells capable of differentiating into skin cells, have demonstrated positive outcomes in preclinical and early clinical trials by promoting wound healing and reducing inflammation. Gene therapy, on the other hand, aims to correct the underlying genetic defects responsible for EB by introducing functional copies of mutated genes or modifying existing genes to restore protein function. Particularly for severe subtypes like Recessive Dystrophic Epidermolysis Bullosa (RDEB), gene therapy holds significant potential. This review aims to evaluate the role of new therapeutic approaches in the treatment of EB. The review includes findings from studies conducted on humans. While early studies and clinical trials have shown promising results, further research and trials are necessary to establish the safety and efficacy of these innovative approaches for EB treatment.


Assuntos
Epidermólise Bolhosa , Terapia Genética , Transplante de Células-Tronco , Humanos , Epidermólise Bolhosa/terapia , Epidermólise Bolhosa/genética , Epidermólise Bolhosa/patologia , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células-Tronco/citologia , Células-Tronco/metabolismo
7.
Curr Protein Pept Sci ; 25(1): 59-70, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37608655

RESUMO

Frequent exposure to various external and internal adverse forces (stresses) disrupts cell protein homeostasis through endoplasmic reticulum (ER) capacity saturation. This process leads to the unfolded protein response (UPR), which aims to re-establish/maintain optimal cellular equilibrium. This complex mechanism is involved in the pathogenesis of various disorders, such as metabolic syndrome, fibrotic diseases, neurodegeneration, and cancer, by altering cellular metabolic changes integral to activating the hepatic stellate cells (HSCs). The development of hepatic fibrosis is one of the consequences of UPR activation. Therefore, novel therapies that target the UPR pathway effectively and specifically are being studied. This article covers the involvement of the UPR signaling pathway in cellular damage in liver fibrosis. Investigating the pathogenic pathways related to the ER/UPR stress axis that contribute to liver fibrosis can help to guide future drug therapy approaches.


Assuntos
Cirrose Hepática , Resposta a Proteínas não Dobradas , Humanos , Cirrose Hepática/patologia , Estresse do Retículo Endoplasmático/fisiologia , Transdução de Sinais , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA