Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Parasitol ; 54(7): 321-332, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460722

RESUMO

Key parasite transmission parameters are difficult to obtain from elusive wild animals. For Echinococcus multilocularis, the causative agent of alveolar echinococcosis (AE), the red fox is responsible for most of the environmental contamination in Europe. The identification of individual spreaders of E. multilocularis environmental contamination is crucial to improving our understanding of the ecology of parasite transmission in areas of high endemicity and optimising the effectiveness of prevention and control measures in the field. Genetic faecal sampling appears to be a feasible method to gain information about the faecal deposition of individual animals. We conducted a 4 year faecal sampling study in a village that is highly endemic for E. multilocularis, to assess the feasibility of individual identification and sexing of foxes to describe individual infection patterns. Individual fox identification from faecal samples was performed by obtaining reliable genotypes from 14 microsatellites and one sex locus, coupled with the detection of E. multilocularis DNA, first using captive foxes and then by environmental sampling. From a collection of 386 fox stools collected between 2017 and 2020, tested for the presence of E. multilocularis DNA, 180 were selected and 124 samples were successfully genotyped (68.9%). In total, 45 unique individual foxes were identified and 26 associated with at least one sample which tested positive for E. multilocularis (Em(+)). Estimation of the population size showed the fox population to be between 29 and 34 individuals for a given year and 67 individuals over 4 years. One-third of infected individuals (9/26 Em(+) foxes) deposited 2/3 of the faeces which tested positive for E. multilocularis (36/60 Em(+) stools). Genetic investigation showed a significantly higher average number of multiple stools for females than males, suggesting that the two sexes potentially defecated unequally in the studied area. Three partially overlapping clusters of fox faeces were found, with one cluster concentrating 2/3 of the total E. multilocularis-positive faeces. Based on these findings, we estimated that 12.5 million E. multilocularis eggs were produced during the study period, emphasizing the high contamination level of the environment and the risk of exposure faced by the parasite hosts.


Assuntos
Equinococose , Echinococcus multilocularis , Fezes , Raposas , Genótipo , Animais , Raposas/parasitologia , Echinococcus multilocularis/isolamento & purificação , Echinococcus multilocularis/genética , Fezes/parasitologia , Equinococose/veterinária , Equinococose/parasitologia , Equinococose/transmissão , Feminino , Masculino , Repetições de Microssatélites
2.
Environ Pollut ; 337: 122100, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37392867

RESUMO

Cadmium (Cd) and lead (Pb) are known to enhance immune cell damages and to decrease cellular immunity, promoting higher susceptibility to infectious diseases. Selenium (Se) is an essential element involved in immunity and reactive oxygen species scavenging. This study aimed at evaluating how Cd and Pb and low nutritional (Se) quality modulate immune response to a bacterial lipopolysaccharide (LPS) challenge in wood mice (Apodemus sylvaticus). Mice were trapped near a former smelter in northern France in sites of High or Low contamination. Individuals were challenged immediately after capture or after five days of captivity, fed a standard or a Se-deficient diet. Immune response was measured with leukocyte count and plasma concentration of TNF-α, a pro-inflammatory cytokine. Faecal and plasma corticosterone (CORT), a stress-hormone involved in anti-inflammatory processes, was measured to assess potential endocrine mechanisms. Higher hepatic Se and lower faecal CORT were measured in free-ranging wood mice from High site. LPS-challenged individuals from High site showed steeper decrease of circulating leukocytes of all types, higher TNF-α concentrations, and a significant increase of CORT, compared to individuals from Low site. Challenged captive animals fed standard food exhibited similar patterns (decrease of leukocytes, increase of CORT, and detectable levels of TNF-α), with individuals from lowly contaminated site having higher immune responses than their counterparts from highly polluted site. Animals fed Se-deficient food exhibited lymphocytes decrease, no CORT variation, and average levels of TNF-α. These results suggest (i) a higher inflammatory response to immune challenge in free-ranging animals highly exposed to Cd and Pb, (ii) a faster recovery of inflammatory response in animals lowly exposed to pollution when fed standard food than more exposed individuals, and (iii) a functional role of Se in the inflammatory response. The role of Se and mechanisms underlying the relationship between glucocorticoid and cytokine remain to be elucidated.


Assuntos
Cádmio , Selênio , Camundongos , Animais , Cádmio/análise , Fator de Necrose Tumoral alfa , Lipopolissacarídeos/toxicidade , Chumbo , Murinae , Poluição Ambiental/análise , Corticosterona , Valor Nutritivo , Imunidade
3.
Int J Parasitol ; 50(14): 1195-1204, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32896570

RESUMO

The eggs of Echinococcus multilocularis, the infectious stage, are spread into the environment through wild and domestic carnivore faeces. The spatial location of the faeces containing infective E. multilocularis eggs is a key parameter for studying areas of exposure and understanding the transmission processes to the intermediate hosts and humans. Echinococcus multilocularis faecal prevalence is often assessed by detecting E. multilocularis DNA, not necessarily eggs. This work aimed to determine the percentage of faeces containing E. multilocularis eggs in a rural town and its surroundings and whether this level of precision is relevant in assessing exposure to E. multilocularis. For this purpose, we developed a combined molecular and microscopic approach to investigate the E. multilocularis exposure of potential hosts in the environment from field-collected carnivore faeces. Carnivore defecation patterns were then spatialized to study the spatial distribution of E. multilocularis. Faeces were screened for E. multilocularis DNA using a specific real-time quantitative PCR (qPCR). Echinococcus multilocularis eggs were morphologically identified from E. multilocularis-specific qPCR-positive faeces after sucrose flotation and individually confirmed through specific PCR and sequencing. The spatial distribution of E. multilocularis was studied using Kulldorff statistics. Echinococcus multilocularis eggs were identified mostly in fox faeces positive for E. multilocularis DNA by qPCR (n = 27/70) and only from 1 of 15 copro-samples from dogs and 1 of 5 from cats. The faecal prevalence of E. multilocularis DNA and eggs was overdispersed, with the same geographical patterns. These data suggest that E. multilocularis DNA and/or egg detection in carnivore faeces, mainly that of foxes, is appropriate in ecological studies of E. multilocularis transmission.


Assuntos
Equinococose , Echinococcus multilocularis , Animais , Gatos/parasitologia , Cidades , Cães/parasitologia , Equinococose/transmissão , Fezes/parasitologia , Raposas/parasitologia , Contagem de Ovos de Parasitas , Reação em Cadeia da Polimerase em Tempo Real
4.
Int J Parasitol ; 48(12): 937-946, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30076909

RESUMO

In zoonotic infections, the relationships between animals and humans lead to parasitic disease with severity that ranges from mild symptoms to life-threatening conditions. In cities and their surrounding areas, this statement is truer with the overcrowding of the protagonists of the parasites' life cycle. The present study aims to investigate the distribution of a parasite, Echinococcus multilocularis, which is the causative agent of alveolar echinococcosis, using copro-sampling in historically endemic rural settlements of the eastern part of France and in newly endemic areas including urban parks and settlements surrounding Paris. Based on 2741 morphologically identified and geolocalized copro-samples, the density of fox faeces was generally higher in the surrounding settlements, except for one rural area where the faeces were at larger density downtown in the winter. Fox faeces are rare but present in urban parks. Dog faeces are concentrated in the park entrances and in the centre of the settlements. DNA was extracted for 1530 samples that were collected and identified from fox, dog, cat, stone marten and badger carnivore hosts. Echinococcus multilocularis diagnosis and host faecal tests were performed using real-time PCR. We failed to detect the parasite in the surroundings of Paris, but the parasite was found in the foxes, dogs and cats in the rural settlements and their surroundings in the historically endemic area. A spatial structuring of the carnivore stool distribution was highlighted in the present study with high densities of carnivore stools among human occupied areas within some potentially high-risk locations.


Assuntos
Carnívoros , DNA de Helmintos/isolamento & purificação , Echinococcus multilocularis/isolamento & purificação , Fezes/parasitologia , Reação em Cadeia da Polimerase em Tempo Real , Animais , Animais Domésticos , Animais Selvagens , Cidades , DNA de Helmintos/genética , Transmissão de Doença Infecciosa , Equinococose/transmissão , Echinococcus multilocularis/genética , Exposição Ambiental , França , Medição de Risco , População Rural , Análise Espacial , População Urbana , Zoonoses/transmissão
5.
Parasit Vectors ; 11(1): 302, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769131

RESUMO

BACKGROUND: The eastern part of the Tibetan Plateau is now recognized as an endemic region with the highest reported human infection rates in the world of human alveolar echinococcosis (AE) caused by Echinococcus multilocularis. Existing epidemiological studies on AE have mainly focused on the synanthropic environment, while basic parasitological and ecological aspects in wildlife host species remain largely unknown, especially for small mammal hosts. Therefore, we examined small mammal host species composition, occurrence, and the prevalence of both E. multilocularis and E. shiquicus in Shiqu County (Sichuan Province, China), eastern Tibetan Plateau. RESULTS: In total, 346 small mammals from five rodent and one pika species were trapped from four randomly set 0.25 ha square plots. Two vole species, Lasiopodomys fuscus (n = 144) and Microtus limnophilus (n = 44), and the plateau pika (Ochotona curzoniae) (n = 135), were the three most-dominant species trapped. Although protoscoleces of E. multilocularis and E. shiquicus were only observed in L. fuscus and O. curzoniae, respectively, cox1 and nad1 gene DNA of E. shiquicus was detected in all the small mammal species except for Neodon irene, whereas E. multilocularis was detected in the three most-dominant species. The overall molecular prevalence of Echinococcus species was 5.8 (95% CI: 3.3-8.2%) ~ 10.7% (95% CI: 7.4-14.0%) (the conservative prevalence to the maximum prevalence with 95% CI in parentheses), whereas for E. multilocularis it was 4.3 (95% CI: 2.2-6.5%) ~ 6.7% (95% CI: 4.0-9.3%), and 1.5 (95% CI: 0.2-2.7%) ~ 4.1% (95% CI: 2.0-6.1%) for E. shiquicus. The prevalence of both E. multilocularis and E. shiquicus, was significantly higher in rodents (mainly voles) than in pikas. Phylogenetic analyses revealed that Echinococcus haplotypes of cox1 from small mammal hosts were actively involved in the sylvatic and anthropogenic transmission cycles of E. multilocularis in the eastern Tibetan Plateau. CONCLUSIONS: In contrast to previous studies, the current results indicated that rodent species, rather than pikas, are probably more important natural intermediate hosts of E. multilocularis and E. shiquicus in the eastern Tibetan Plateau. Thus, understanding interspecific dynamics between rodents and pikas is essential to studies of the echinococcosis transmission mechanism and human echinococcosis prevention in local communities.


Assuntos
Equinococose/veterinária , Echinococcus multilocularis/isolamento & purificação , Echinococcus/genética , Mamíferos/parasitologia , Animais , China/epidemiologia , DNA de Helmintos/genética , Equinococose/epidemiologia , Equinococose/parasitologia , Equinococose/transmissão , Echinococcus/classificação , Echinococcus/isolamento & purificação , Echinococcus multilocularis/genética , Raposas/parasitologia , Haplótipos , Especificidade de Hospedeiro , Humanos , Lagomorpha/parasitologia , Filogenia , Prevalência , Roedores/parasitologia , Tibet/epidemiologia
6.
Prev Vet Med ; 147: 178-185, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29254718

RESUMO

With the ongoing spread of Echinococcus multilocularis in Europe, sanitary authorities are looking for the most efficient ways of reducing the risk for human populations. Fox culling is one particular tool that has recently shifted from predation control to population health management. Our study aims to assess the effectiveness of this tool in limiting E. multilocularis prevalence in fox populations in France. During four years, a culling protocol by night shooting from cars was implemented around the city of Nancy (eastern France) representing ∼1700h of night work and ∼15,000km driven. The 776 foxes killed represented an overall increase of 35% of the pressure on the fox population over 693km2. Despite this consequent effort of culling, not only did night shooting of foxes fail to decrease the fox population, but it resulted in an increase in E. multilocularis prevalence from 40% to 55% while remaining stable in an adjacent control area (585km2). Though no significant change in age structure could be described, an increase in immigration and local recruitment is the best hypothesis for population resilience. The increase in prevalence is therefore considered to be linked to a higher rate of juvenile movement within the culled area shedding highly contaminated faeces. We therefore advocate managers to consider alternative methods such as anthelmintic baiting, which has been proven to be efficient elsewhere, to fight against alveolar echinococcosis.


Assuntos
Controle de Doenças Transmissíveis/métodos , Equinococose/prevenção & controle , Echinococcus multilocularis/fisiologia , Animais , Equinococose/epidemiologia , Raposas , França/epidemiologia , Prevalência
7.
Parasitol Res ; 115(11): 4437-4441, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27517858

RESUMO

Alveolar echinococcosis is considered to be the most serious zoonosis in the Northern Hemisphere's cold or temperate regions. In Europe, the parasite has a sylvatic life cycle based on predator-prey interactions, mainly between red foxes and small rodents. Echinococcus multilocularis has been observed to have spread across Europe over the last three decades. In France, a westward spread of the parasite's known endemic areas has been described. In this study, a retrospective analysis of fox feces by real-time PCR was carried out in four départements not previously investigated and considered free along with two endemic control departments. The fox feces collected from 2000 to 2004 were analyzed by real-time PCR. Fecal prevalence in the two endemic departments of Doubs and Côte d'Or were estimated at 12 % [6.4-20.0 %] and 4.2 % [1.1-10.3 %], respectively. No positive samples were identified among the 72 feces collected in Drôme or the 112 from Allier, which is consistent with the very low expected prevalence should the parasite be present. Three positive samples were recovered in the Seine-Maritime and Hautes-Alpes départements, resulting in a prevalence of 3.5 % [0.7-10.0 %] and 2.5 % [0.5-7.1 %], respectively. From now on, Hautes-Alpes constitutes the new southern border of the endemic areas in France and confirms the southward expansion previously highlighted. Real-time copro-PCR proved useful in identifying new endemic areas even with low prevalence. Due to the spread of E. multilocularis in France and associated zoonotic risk, it is necessary to expand surveillance in order to fully define all the country's endemic areas. On a continental scale, the development and harmonization of surveillance programs are now needed in order to obtain a global overview of the presence of E. multilocularis and to tailor potential countermeasures.


Assuntos
Equinococose Hepática/veterinária , Echinococcus multilocularis/isolamento & purificação , Raposas/parasitologia , Animais , Equinococose Hepática/epidemiologia , Equinococose Hepática/parasitologia , Doenças Endêmicas/veterinária , Fezes/parasitologia , França/epidemiologia , Humanos , Prevalência , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Estudos Retrospectivos
8.
Parasite ; 21: 69, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25526544

RESUMO

Alveolar echinococcosis (AE) is an endemic zoonosis in France due to the cestode Echinococcus multilocularis. The French National Reference Centre for Alveolar Echinococcosis (CNR-EA), connected to the FrancEchino network, is responsible for recording all AE cases diagnosed in France. Administrative, epidemiological and medical information on the French AE cases may currently be considered exhaustive only on the diagnosis time. To constitute a reference data set, an information system (IS) was developed thanks to a relational database management system (MySQL language). The current data set will evolve towards a dynamic surveillance system, including follow-up data (e.g. imaging, serology) and will be connected to environmental and parasitological data relative to E. multilocularis to better understand the pathogen transmission pathway. A particularly important goal is the possible interoperability of the IS with similar European and other databases abroad; this new IS could play a supporting role in the creation of new AE registries.


Assuntos
Equinococose Hepática/epidemiologia , Sistemas de Informação/organização & administração , Sistema de Registros , Animais , Confidencialidade , Coleta de Dados , Equinococose , França/epidemiologia , Humanos , Vigilância da População , Interface Usuário-Computador , Zoonoses
9.
Vet Parasitol ; 201(1-2): 40-7, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24484767

RESUMO

The oncosphere stage of Echinococcus multilocularis in red fox stools can lead, after ingestion, to the development of alveolar echinococcosis in the intermediate hosts, commonly small mammals and occasionally humans. Monitoring animal infection and environmental contamination is a key issue in public health surveillance. We developed a quantitative real-time PCR technique (qPCR) to detect and quantify E. multilocularis DNA released in fox faeces. A qPCR technique using a hydrolysis probe targeting part of the mitochondrial gene rrnL was assessed on (i) a reference collection of stools from 57 necropsied foxes simultaneously investigated using the segmental sedimentation and counting technique (SSCT) (29 positive for E. multilocularis worms and 28 negative animals for the parasite); (ii) a collection of 114 fox stools sampled in the field: two sets of 50 samples from contrasted endemic regions in France and 14 from an E. multilocularis-free area (Greenland). Of the negative SSCT controls, 26/28 were qPCR-negative and two were weakly positive. Of the positive SSCT foxes, 25/29 samples were found to be positive by qPCR. Of the field samples, qPCR was positive in 21/50 (42%) and 5/48 (10.4%) stools (2 samples inhibited), originating respectively from high and low endemic areas. In faeces, averages of 0.1 pg/µl of DNA in the Jura area and 0.7 pg/µl in the Saône-et-Loire area were detected. All qPCR-positive samples were confirmed by sequencing. The qPCR technique developed here allowed us to quantify environmental E. multilocularis contamination by fox faeces by studying the infectious agent directly. No previous study had performed this test in a one-step reaction.


Assuntos
Equinococose/diagnóstico , Echinococcus multilocularis/genética , Monitoramento Ambiental/métodos , Fezes/parasitologia , Raposas/parasitologia , Reação em Cadeia da Polimerase em Tempo Real , Animais , Sensibilidade e Especificidade
10.
Parasitology ; 140(13): 1693-700, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23962413

RESUMO

Recent changes in the epidemiology of alveolar echinococcosis (AE) in Eurasia have led to increasing concerns about the risk of human AE and the need for a thorough evaluation of the epidemiological situation. The aim of this study was to explore the use of a National Register to detect complex distribution patterns on several scales. The data were human AE cases from the FrancEchino register, diagnosed in France from 1982 to 2011. We used the Kulldorff spatial scan analysis to detect non-random locations of cases. We proposed an exploratory method that was based on the successive detection of nested clusters inside each of the statistically significant larger clusters. This method revealed at least 4 levels of disease clusters during the study period. The spatial variations of cluster location over time were also shown. We conclude that National Human AE registers, although not exempted from epidemiological biases, are currently the best way to achieve an accurate representation of human AE distribution on various scales. Finally, we confirm the multi-scale clustered distribution of human AE, and we hypothesize that our study may be a reasonable starting point from which to conduct additional research and explore the processes that underlie such distributions.


Assuntos
Equinococose Hepática/epidemiologia , Echinococcus multilocularis/isolamento & purificação , Monitoramento Epidemiológico , Sistema de Registros , Animais , Análise por Conglomerados , Equinococose , Equinococose Hepática/parasitologia , Feminino , França/epidemiologia , Humanos , Masculino , Método de Monte Carlo , Prevalência , Análise Espacial
11.
Parasitology ; 140(13): 1578-88, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23985371

RESUMO

Human cysticercosis, caused by accidental ingestion of eggs of Taenia solium, is one of the most pathogenic helminthiases and is listed among the 17 WHO Neglected Tropical Diseases. Controlling the life-cycle of T. solium between humans and pigs is essential for eradication of cysticercosis. One difficulty for the accurate detection and identification of T. solium species is the possible co-existence of two other human Taenia tapeworms (T. saginata and T. asiatica, which do not cause cysticercosis in humans). Several key issues for taeniasis/cysticercosis (T/C) evidence-based epidemiology and control are reviewed: (1) advances in immunological and molecular tools for screening of human and animals hosts and identification of Taenia species, with a focus on real-time detection of taeniasis carriers and infected animals in field community screenings, and (2) spatial ecological approaches that have been used to detect geospatial patterns of case distributions and to monitor pig activity and behaviour. Most recent eco-epidemiological studies undertaken in Sichuan province, China, are introduced and reviewed.


Assuntos
Antígenos de Helmintos/isolamento & purificação , Cisticercose/diagnóstico , Cisticercose/veterinária , DNA de Helmintos/isolamento & purificação , Doenças dos Suínos/diagnóstico , Taenia/isolamento & purificação , Animais , China/epidemiologia , Cisticercose/epidemiologia , Cisticercose/transmissão , Fezes/parasitologia , Humanos , Epidemiologia Molecular , Doenças Negligenciadas , Análise Espacial , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/transmissão , Taenia/classificação
12.
Parasitology ; 140(13): 1602-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23866973

RESUMO

Detection of taeniasis carriers of Taenia solium is essential for control of cysticercosis in humans and pigs. In the current study, we assessed the positive detection rate of a self-detection tool, stool microscopy with direct smear and coproPCR for taeniasis carriers in endemic Tibetan areas of northwest Sichuan. The self-detection tool through questioning about a history of proglottid expulsion within the previous one year showed an overall positive detection rate of more than 80% for Taenia saginata, T. solium and T. asiatica. The positive detection rate was similar for T. saginata and T. solium. In 132 taeniid tapeworm carriers, 68 (51·5%) were detected by microscopy and 92 (69·7%) were diagnosed by coproPCR. A combination of microscopy and coproPCR increased the positive detection rate to 77·3%. There remained 10 cases (7·6%) coproPCR negative but microscopy positive. Due to the high cost and complicated process, coproPCR is required for the identification of Taenia species only when necessary, though it had a significant higher positive detection rate than microscopy. Combined use of self-detection and stool microscopy are recommended in community-based mass screening for taeniases in this Tibetan area or in other situation-similar endemic regions.


Assuntos
Portador Sadio/diagnóstico , Taenia saginata/isolamento & purificação , Taenia solium/isolamento & purificação , Taenia/isolamento & purificação , Teníase/diagnóstico , Adolescente , Adulto , Idoso , Animais , Portador Sadio/epidemiologia , Criança , Autoavaliação Diagnóstica , Fezes/parasitologia , Feminino , Humanos , Masculino , Programas de Rastreamento , Microscopia , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Suínos , Taenia/genética , Taenia saginata/genética , Taenia solium/genética , Teníase/epidemiologia , Tibet/epidemiologia
13.
Parasitology ; 140(13): 1655-66, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23734823

RESUMO

From continental to regional scales, the zoonosis alveolar echinococcosis (AE) (caused by Echinococcus multilocularis) forms discrete patches of endemicity within which transmission hotspots of much larger prevalence may occur. Since the late 80s, a number of hotspots have been identified in continental Asia, mostly in China, wherein the ecology of intermediate host communities has been described. This is the case in south Gansu, at the eastern border of the Tibetan plateau, in south Ningxia, in the western Tian Shan of Xinjiang, and in the Alay valley of south Kyrgyzstan. Here we present a comparative natural history and characteristics of transmission ecosystems or ecoscapes. On this basis, regional types of transmission and their ecological characteristics have been proposed in a general framework. Combining climatic, land cover and intermediate host species distribution data, we identified and mapped 4 spatially distinct types of transmission ecosystems typified by the presence of one of the following small mammal 'flagship' species: Ellobius tancrei, Ochotona curzoniae, Lasiopodomys brandtii or Eospalax fontanierii. Each transmission ecosystem had its own characteristics which can serve as a reference for further in-depth research in the transmission ecology of E. multilocularis. This approach may be used at fine spatial scales to characterize other poorly known transmission systems of the large Eurasian endemic zone, and help in consideration of surveillance systems and interventions.


Assuntos
Arvicolinae/parasitologia , DNA de Helmintos/genética , Equinococose Hepática/transmissão , Equinococose Hepática/veterinária , Echinococcus multilocularis/isolamento & purificação , Lagomorpha/parasitologia , Lobos/parasitologia , Distribuição Animal , Animais , Ásia Central/epidemiologia , China/epidemiologia , Vetores de Doenças , Equinococose , Equinococose Hepática/epidemiologia , Equinococose Hepática/parasitologia , Echinococcus multilocularis/genética , Ecossistema , Fezes/parasitologia , Especificidade de Hospedeiro , Humanos , Filogeografia , Especificidade da Espécie
14.
PLoS Negl Trop Dis ; 7(3): e2045, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23505582

RESUMO

BACKGROUND: Human alveolar echinococcocosis (AE) is a highly pathogenic zoonotic disease caused by the larval stage of the cestode E. multilocularis. Its life-cycle includes more than 40 species of small mammal intermediate hosts. Therefore, host biodiversity losses could be expected to alter transmission. Climate may also have possible impacts on E. multilocularis egg survival. We examined the distribution of human AE across two spatial scales, (i) for continental China and (ii) over the eastern edge of the Tibetan plateau. We tested the hypotheses that human disease distribution can be explained by either the biodiversity of small mammal intermediate host species, or by environmental factors such as climate or landscape characteristics. METHODOLOGY/FINDINGS: The distributions of 274 small mammal species were mapped to 967 point locations on a grid covering continental China. Land cover, elevation, monthly rainfall and temperature were mapped using remotely sensed imagery and compared to the distribution of human AE disease at continental scale and over the eastern Tibetan plateau. Infection status of 17,589 people screened by abdominal ultrasound in 2002-2008 in 94 villages of Tibetan areas of western Sichuan and Qinghai provinces was analyzed using generalized additive mixed models and related to epidemiological and environmental covariates. We found that human AE was not directly correlated with small mammal reservoir host species richness, but rather was spatially correlated with landscape features and climate which could confirm and predict human disease hotspots over a 200,000 km(2) region. CONCLUSIONS/SIGNIFICANCE: E. multilocularis transmission and resultant human disease risk was better predicted from landscape features that could support increases of small mammal host species prone to population outbreaks, rather than host species richness. We anticipate that our study may be a starting point for further research wherein landscape management could be used to predict human disease risk and for controlling this zoonotic helminthic.


Assuntos
Equinococose Hepática/epidemiologia , Equinococose Hepática/transmissão , Echinococcus multilocularis/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biodiversidade , Criança , Pré-Escolar , China/epidemiologia , Clima , Reservatórios de Doenças , Feminino , Geografia , Humanos , Masculino , Mamíferos/classificação , Pessoa de Meia-Idade , Fatores de Risco , Adulto Jovem
15.
Emerg Infect Dis ; 18(12): 2059-62, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23171707

RESUMO

During 2005-2010, we investigated Echinococcus multilocularis infection within fox populations in a large area in France. The parasite is much more widely distributed than hitherto thought, spreading west, with a much higher prevalence than previously reported. The parasite also is present in the large conurbation of Paris.


Assuntos
Equinococose/veterinária , Echinococcus multilocularis , Raposas/parasitologia , Animais , França/epidemiologia , Prevalência , Estações do Ano
16.
Acta Trop ; 124(2): 152-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22910218

RESUMO

Taeniasis refers to the infection with adult tapeworms of Taenia spp. in the upper small intestine of humans, which is also a cause of cysticercosis infection in either both humans and/or animals. Currently the most commonly applied anthelminthics for treatment of taeniasis are praziquantel and niclosamide. Praziquantel is very effective, but has the risk of induction of epileptic seizures or convulsions in carriers with asymptomatic concurrent neurocysticercosis. In contrast, niclosamide is safe and effective, but is not readily available in many endemic countries including China. In the current community-based study, we assessed the curative effect of either pumpkin seeds or areca nut extract alone in taeniasis, and also looked at synergistic effects of these two herb drugs on tapeworms. In the study group with the pumpkin seed/areca nut extract treatment, 91 (79.1%) of 115 suspected taeniasis cases (with a history of expulsion of proglottids within the previous one year) released whole tapeworms, four (3.5%) expelled incomplete strobila, and no tapeworms or proglottids were recovered in the remaining 20 cases. In these 115 persons, 45 were confirmed as taeniasis before treatment by microscopy and/or coproPCR. Forty (88.9%) of 45 confirmed cases eliminated intact worms following treatment. The mean time period for complete elimination of tapeworms in 91 taeniasis cases was 2 h (range 20 min to 8 h 30 min), and 89.0% (81) of 91 patients discharged intact worms within 3h after drug administration. In Control Group A with treatment of pumpkin seeds alone, 75.0% (9/12) of confirmed taeniasis cases expelled whole tapeworms, but the mean time period for complete elimination was about 14 h 10 min (range 3 h 20 min to 21 h 20 min), which was much longer than that (2 h) for the study group, whereas in Control Group B treated with areca nut extract alone, only 63.6% (7/11) of taeniasis cases discharged whole tapeworms, and the mean time period was 6 h 27 min (range 1-22 h). Mild side effects included nausea and dizziness in about 46.3% of patients with the pumpkin seeds/areca nut extract treatment, but all discomforts were transient and well tolerated. In conclusion, a synergistic effect of pumpkin seed and areca nut extract on Taenia spp. tapeworms was confirmed in the current study, primarily in producing an increased rate of effect on tapeworm expulsion (average time 2 h for combination vs 6-21 h for individual extracts). The pumpkin seed/areca combined treatment was indicated to be safe and highly effective (89%) for human taeniasis.


Assuntos
Anti-Helmínticos/uso terapêutico , Areca/química , Cucurbita/química , Extratos Vegetais/uso terapêutico , Teníase/tratamento farmacológico , Adolescente , Adulto , Idoso , Animais , Anti-Helmínticos/efeitos adversos , Anti-Helmínticos/isolamento & purificação , Anti-Helmínticos/farmacologia , Criança , China , Tontura/induzido quimicamente , Sinergismo Farmacológico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Náusea/induzido quimicamente , Extratos Vegetais/efeitos adversos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Sementes/química , Taenia/efeitos dos fármacos , Resultado do Tratamento , Adulto Jovem
17.
Chin Med J (Engl) ; 124(18): 2943-53, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22040507

RESUMO

Since the first 2 cases observed in southern Germany and the correct identification of a parasite at the origin of the disease by the famous scientist Rudolf Virchow in 1855, the borders of the endemic area of alveolar echinococcosis (AE) have never stopped to expand. The parasite was successively recognized in Switzerland, then in Russia, Austria and France which were long considered as the only endemic areas for the disease. Cases were disclosed in Turkey in 1939; then much attention was paid to Alaska and to Hokkaido, in Japan. The situation totally changed in 1991 after the recognition of the Chinese endemic areas by the international community of scientists. The world map was completed in the beginning of the 21st century by the identification of AE in most of the countries of central/eastern Europe and Baltic States, and by the recognition of cases in central Asia. Up to now, the disease has however never been reported in the South hemisphere and in the United Kingdom. In the mid-1950s, demonstration by Rausch and Schiller in Alaska, and by Vogel in Germany, of the distinction between 2 parasite species responsible respectively for cystic echinococcosis ("hydatid disease") and AE put an end to the long-lasting debate between the "dualists", who believed in that theory which eventually proved to be true, and the "unicists", who believed in a single species responsible for both diseases. At the end of the 20th century, molecular biology fully confirmed the "dualist" theory while adding several new species to the initially described E. granulosus; within the past decade, it also confirmed that little variation existed within Echinococcus (E.) multilocularis species, and that AE-looking infection in some intermediate animal hosts on the Tibetan plateau was indeed due to a new species, distinct from E. multilocularis, named E. shiquicus. Since the 1970s, the unique ecological interactions between the landscape, the hosts, and E. multilocularis have progressively been delineated. The important role of the rodent/lagomorph reservoir size for the maintenance of the parasite cycle has been recognized within the last 2 decades of the 20th century. And the discovery of a close relationship between high densities of small mammals and particularities in land use by agriculture/forestry has stressed the responsibility of political/economic decisions on the contamination pressure. Urbanization of foxes in Europe and Japan and the major role of dogs in China represent the new deals at the beginning of the 21st century regarding definitive hosts and prevention measures.


Assuntos
Equinococose Hepática/epidemiologia , Equinococose Hepática/parasitologia , Echinococcus/patogenicidade , Animais , China/epidemiologia , Equinococose , Humanos
18.
Oecologia ; 164(1): 129-39, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20461413

RESUMO

The functional response of predators to prey density variations has previously been investigated in order to understand predation patterns. However, the consequences of functional response on parasite transmission remain largely unexplored. The rodents Microtus arvalis and Arvicola terrestris are the main prey of the red fox Vulpes vulpes in eastern France. These species are intermediate and definitive hosts of the cestode Echinococcus multilocularis. We explored the dietary and contamination responses of the red fox to variations in prey density. The dietary response differed between the two prey species: no response for M. arvalis and a type III-like (sigmoidal) response for A. terrestris that shows possible interference with M. arvalis. The fox contamination response followed a type II shape (asymptotic) for both species. We conclude that fox predation is species specific and E. multilocularis transmission is likely to be regulated by a complex combination of predation and immunologic factors. These results should provide a better understanding of the biological and ecological mechanisms involved in the transmission dynamics of trophically transmitted parasites when multiple hosts are involved. The relevance of the models of parasite transmission should be enhanced if non-linear patterns are taken into account.


Assuntos
Arvicolinae/parasitologia , Equinococose/veterinária , Echinococcus multilocularis , Raposas/psicologia , Comportamento Predatório , Animais , Equinococose/transmissão , Ecossistema , Comportamento Alimentar , Raposas/parasitologia , França , Densidade Demográfica
19.
Chin Med J (Engl) ; 123(1): 61-7, 2010 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-20137577

RESUMO

BACKGROUND: Alveolar echinococcosis is a major zoonosis of public health significance in western China. Overgrazing was recently assumed as a potential risk factor for transmission of alveolar echinococcosis. The research was designed to further test the overgrazing hypothesis by investigating how overgrazing influenced the burrow density of intermediate host small mammals and how the burrow density of small mammals was associated with dog Echinococcus multilocularis infection. METHODS: The study sites were chosen by previous studies which found areas where the alveolar echinococcosis was prevalent. The data, including grass height, burrow density of intermediate host small mammals, dog and fox fecal samples as well as Global Positioning System (GPS) position, were collected from field investigations in Shiqu County, Sichuan Province, China. The fecal samples were analyzed using copro-PCR. The worms, teeth, bones and hairs in the fecal samples were visually examined. Single factor and multifactor analyses tools including chi square and generalized linear models were applied to these data. RESULTS: By using grass height as a proxy of grazing pressure in the homogenous pasture, this study found that taller grass in the pasture led to lower small mammals' burrow density (chi(2) = 4.670, P = 0.031, coefficient = -1.570). The Echinococcus multilocularis worm burden in dogs was statistically significantly related to the maximum density of the intermediate host Ochotona spp. (chi(2) = 5.250, P = 0.022, coefficient = 0.028). The prevalence in owned dogs was positively correlated to the number of stray dogs seen within a 200 meter radius (Wald chi(2) = 8.375, P = 0.004, odds ratio = 1.198). CONCLUSIONS: Our findings support the hypothesis that overgrazing promotes transmission of alveolar echinococcosis and confirm the role of stray dogs in the transmission of alveolar echinococcosis.


Assuntos
Doenças do Cão/transmissão , Equinococose/transmissão , Echinococcus multilocularis/fisiologia , Poaceae/crescimento & desenvolvimento , Animais , China , Doenças do Cão/parasitologia , Cães , Equinococose/parasitologia , Ecologia , Poaceae/parasitologia , Tibet
20.
PLoS Negl Trop Dis ; 3(6): e452, 2009 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-19513103

RESUMO

BACKGROUND: Alveolar echinococcosis (AE) is a severe helminth disease affecting humans, which is caused by the fox tapeworm Echinococcus multilocularis. AE represents a serious public health issue in larger regions of China, Siberia, and other regions in Asia. In Europe, a significant increase in prevalence since the 1990s is not only affecting the historically documented endemic area north of the Alps but more recently also neighbouring regions previously not known to be endemic. The genetic diversity of the parasite population and respective distribution in Europe have now been investigated in view of generating a fine-tuned map of parasite variants occurring in Europe. This approach may serve as a model to study the parasite at a worldwide level. METHODOLOGY/PRINCIPAL FINDINGS: The genetic diversity of E. multilocularis was assessed based upon the tandemly repeated microsatellite marker EmsB in association with matching fox host geographical positions. Our study demonstrated a higher genetic diversity in the endemic areas north of the Alps when compared to other areas. CONCLUSIONS/SIGNIFICANCE: The study of the spatial distribution of E. multilocularis in Europe, based on 32 genetic clusters, suggests that Europe can be considered as a unique global focus of E. multilocularis, which can be schematically drawn as a central core located in Switzerland and Jura Swabe flanked by neighbouring regions where the parasite exhibits a lower genetic diversity. The transmission of the parasite into peripheral regions is governed by a "mainland-island" system. Moreover, the presence of similar genetic profiles in both zones indicated a founder event.


Assuntos
Equinococose/veterinária , Echinococcus multilocularis/classificação , Echinococcus multilocularis/genética , Raposas/parasitologia , Variação Genética , Animais , Análise por Conglomerados , Impressões Digitais de DNA , Echinococcus multilocularis/isolamento & purificação , Europa (Continente)/epidemiologia , Geografia , Repetições de Microssatélites , Epidemiologia Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA