Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(3): e0116096, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25790369

RESUMO

mTOR complex1, the major regulator of mRNA translation in all eukaryotic cells, is strongly activated in most cancers. We performed a genome-wide RNAi screen in a human cancer cell line, seeking genes that regulate S6 phosphorylation, readout of mTORC1 activity. Applying a stringent selection, we retrieved nearly 600 genes wherein at least two RNAis gave significant reduction in S6-P. This cohort contains known regulators of mTOR complex 1 and is significantly enriched in genes whose depletion affects the proliferation/viability of the large set of cancer cell lines in the Achilles database in a manner paralleling that caused by mTOR depletion. We next examined the effect of RNAi pools directed at 534 of these gene products on S6-P in TSC1 null mouse embryo fibroblasts. 76 RNAis reduced S6 phosphorylation significantly in 2 or 3 replicates. Surprisingly, among this cohort of genes the only elements previously associated with the maintenance of mTORC1 activity are two subunits of the vacuolar ATPase and the CUL4 subunit DDB1. RNAi against a second set of 84 targets reduced S6-P in only one of three replicates. However, an indication that this group also bears attention is the presence of rpS6KB1 itself, Rac1 and MAP4K3, a protein kinase that supports amino acid signaling to rpS6KB1. The finding that S6 phosphorylation requires a previously unidentified, functionally diverse cohort of genes that participate in fundamental cellular processes such as mRNA translation, RNA processing, DNA repair and metabolism suggests the operation of feedback pathways in the regulation of mTORC1 operating through novel mechanisms.


Assuntos
RNA Interferente Pequeno/metabolismo , Proteína S6 Ribossômica/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , DNA/metabolismo , Reparo do DNA , Genoma , Humanos , Camundongos , Fosforilação , Biossíntese de Proteínas , RNA/metabolismo , Interferência de RNA , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais
2.
J Biol Chem ; 289(5): 2658-74, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24337580

RESUMO

Activation of mammalian target of rapamycin complex 1 (mTORC1) by amino acids is mediated in part by the Rag GTPases, which bind the raptor subunit of mTORC1 in an amino acid-stimulated manner and promote mTORC1 interaction with Rheb-GTP, the immediate activator. Here we examine whether the ability of amino acids to regulate mTORC1 binding to Rag and mTORC1 activation is due to the regulation of Rag guanyl nucleotide charging. Rag heterodimers in vitro exhibit a very rapid, spontaneous exchange of guanyl nucleotides and an inability to hydrolyze GTP. Mutation of the Rag P-loop corresponding to Ras(Ser-17) abolishes guanyl nucleotide binding. Such a mutation in RagA or RagB inhibits, whereas in RagC or RagD it enhances, Rag heterodimer binding to mTORC1. The binding of wild-type and mutant Rag heterodimers to mTORC1 in vitro parallels that seen with transient expression, but binding to mTORC1 in vitro is entirely independent of Rag guanyl nucleotide charging. HeLa cells stably overexpressing wild-type or P-loop mutant RagC exhibit unaltered amino acid regulation of mTORC1. Despite amino acid-independent raptor binding to Rag, mTORC1 is inhibited by amino acid withdrawal as in parental cells. Rag heterodimers extracted from (32)P-labeled whole cells, or just from the pool associated with the lysosomal membrane, exhibit constitutive [(32)P]GTP charging that is unaltered by amino acid withdrawal. Thus, amino acids promote mTORC1 activation without altering Rag GTP charging. Raptor binding to Rag, although necessary, is not sufficient for mTORC1 activation. Additional amino acid-dependent steps couple Rag-mTORC1 to Rheb-GTP.


Assuntos
Aminoácidos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Dimerização , Ativação Enzimática/fisiologia , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Células HEK293 , Células HeLa , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Ligação Proteica/fisiologia , Proteína Regulatória Associada a mTOR , Transdução de Sinais/fisiologia , Trítio , Homólogo LST8 da Proteína Associada a mTOR
3.
J Biol Chem ; 286(44): 38043-38053, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21914810

RESUMO

Insulin activation of mTOR complex 1 is accompanied by enhanced binding of substrates. We examined the mechanism and contribution of this enhancement to insulin activation of mTORC1 signaling in 293E and HeLa cells. In 293E, insulin increased the amount of mTORC1 retrieved by the transiently expressed nonphosphorylatable 4E-BP[5A] to an extent that varied inversely with the amount of PRAS40 bound to mTORC1. RNAi depletion of PRAS40 enhanced 4E-BP[5A] binding to ∼70% the extent of maximal insulin, and PRAS40 RNAi and insulin together did not increase 4E-BP[5A] binding beyond insulin alone, suggesting that removal of PRAS40 from mTORC1 is the predominant mechanism of an insulin-induced increase in substrate access. As regards the role of increased substrate access in mTORC1 signaling, RNAi depletion of PRAS40, although increasing 4E-BP[5A] binding, did not stimulate phosphorylation of endogenous mTORC1 substrates S6K1(Thr(389)) or 4E-BP (Thr(37)/Thr(46)), the latter already ∼70% of maximal in amino acid replete, serum-deprived 293E cells. In HeLa cells, insulin and PRAS40 RNAi also both enhanced the binding of 4E-BP[5A] to raptor but only insulin stimulated S6K1 and 4E-BP phosphorylation. Furthermore, Rheb overexpression in 293E activated mTORC1 signaling completely without causing PRAS40 release. In the presence of Rheb and insulin, PRAS40 release is abolished by Akt inhibition without diminishing mTORC1 signaling. In conclusion, dissociation of PRAS40 from mTORC1 and enhanced mTORC1 substrate binding results from Akt and mTORC1 activation and makes little or no contribution to mTORC1 signaling, which rather is determined by Rheb activation of mTOR catalytic activity, through mechanisms that remain to be fully elucidated.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação da Expressão Gênica , Fosfoproteínas/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glutationa Transferase/metabolismo , Células HeLa , Humanos , Insulina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos , Fosforilação , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
4.
Biochem Soc Trans ; 37(Pt 1): 223-6, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19143636

RESUMO

The signalling function of mTOR complex 1 is activated by Rheb-GTP, which controls the catalytic competence of the mTOR (mammalian target of rapamycin) kinase domain by an incompletely understood mechanism. Rheb can bind directly to the mTOR kinase domain, and association with inactive nucleotide-deficient Rheb mutants traps mTOR in a catalytically inactive state. Nevertheless, Rheb-GTP targets other than mTOR, such as FKBP38 (FK506-binding protein 38) and/or PLD1 (phospholipase D(1)), may also contribute to mTOR activation. Once activated, the mTOR catalytic domain phosphorylates substrates only when they are bound to raptor (regulatory associated protein of mTOR), a separate polypeptide within the complex. The mechanism of insulin/nutrient stimulation of mTOR complex 1 signalling, in addition to Rheb-GTP activation of the mTOR catalytic function, also involves a stable modification of the configuration of mTORC1 (mTOR complex 1) that increases access of substrates to their binding site on the raptor polypeptide. The mechanism underlying this second step in the activation of mTORC1 is unknown.


Assuntos
Guanosina Trifosfato/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuropeptídeos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Catálise , Ativação Enzimática , Humanos
5.
Am J Physiol Endocrinol Metab ; 296(4): E592-602, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18765678

RESUMO

TOR complex 1 (TORC1), an oligomer of the mTOR (mammalian target of rapamycin) protein kinase, its substrate binding subunit raptor, and the polypeptide Lst8/GbetaL, controls cell growth in all eukaryotes in response to nutrient availability and in metazoans to insulin and growth factors, energy status, and stress conditions. This review focuses on the biochemical mechanisms that regulate mTORC1 kinase activity, with special emphasis on mTORC1 regulation by amino acids. The dominant positive regulator of mTORC1 is the GTP-charged form of the ras-like GTPase Rheb. Insulin, growth factors, and a variety of cellular stressors regulate mTORC1 by controlling Rheb GTP charging through modulating the activity of the tuberous sclerosis complex, the Rheb GTPase activating protein. In contrast, amino acids, especially leucine, regulate mTORC1 by controlling the ability of Rheb-GTP to activate mTORC1. Rheb binds directly to mTOR, an interaction that appears to be essential for mTORC1 activation. In addition, Rheb-GTP stimulates phospholipase D1 to generate phosphatidic acid, a positive effector of mTORC1 activation, and binds to the mTOR inhibitor FKBP38, to displace it from mTOR. The contribution of Rheb's regulation of PL-D1 and FKBP38 to mTORC1 activation, relative to Rheb's direct binding to mTOR, remains to be fully defined. The rag GTPases, functioning as obligatory heterodimers, are also required for amino acid regulation of mTORC1. As with amino acid deficiency, however, the inhibitory effect of rag depletion on mTORC1 can be overcome by Rheb overexpression, whereas Rheb depletion obviates rag's ability to activate mTORC1. The rag heterodimer interacts directly with mTORC1 and may direct mTORC1 to the Rheb-containing vesicular compartment in response to amino acid sufficiency, enabling Rheb-GTP activation of mTORC1. The type III phosphatidylinositol kinase also participates in amino acid-dependent mTORC1 activation, although the site of action of its product, 3'OH-phosphatidylinositol, in this process is unclear.


Assuntos
Aminoácidos/fisiologia , Fatores de Transcrição/fisiologia , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Animais , Proteínas de Drosophila/fisiologia , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/fisiologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Modelos Biológicos , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Complexos Multiproteicos , Neuropeptídeos/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Fosfolipase D/metabolismo , Fosfolipase D/fisiologia , Proteínas , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR , Proteínas de Ligação a Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/fisiologia , Fatores de Transcrição/metabolismo
6.
J Cell Sci ; 121(Pt 23): 3912-21, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19001501

RESUMO

Nek6 and Nercc1 (also known as Nek9) belong to the NIMA family of protein kinases. Nercc1 is activated in mitosis, whereupon it binds, phosphorylates and activates Nek6. Interference with Nek6 or Nercc1 in mammalian cells causes prometaphase-metaphase arrest, and depletion of Nercc1 from Xenopus egg extracts prevents normal spindle assembly. Herein we show that Nek6 is constitutively associated with Eg5 (also known as Kinesin-5 and Kif11), a kinesin that is necessary for spindle bipolarity. Nek6 phosphorylated Eg5 at several sites in vitro and one of these sites, Ser1033, is phosphorylated in vivo during mitosis. Whereas CDK1 phosphorylates nearly all Eg5 at Thr926 during mitosis, Nek6 phosphorylates approximately 3% of Eg5, primarily at the spindle poles. Eg5 depletion caused mitotic arrest, resulting in cells with a monopolar spindle. This arrest could be rescued by wild-type Eg5 but not by Eg5[Thr926Ala]. Despite substantial overexpression, Eg5[Ser1033Ala] rescued 50% of cells compared with wild-type Eg5, whereas an Eg5[Ser1033Asp] mutant was nearly as effective as wild type. Thus, during mitosis Nek6 phosphorylates a subset of Eg5 polypeptides at a conserved site, the phosphorylation of which is crucial for the mitotic function of Eg5.


Assuntos
Cinesinas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/metabolismo , Proteínas de Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células Cultivadas , Células HeLa , Humanos , Cinesinas/genética , Dados de Sequência Molecular , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Proteínas de Xenopus/genética
7.
Mol Cell Biol ; 26(14): 5497-508, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16809782

RESUMO

CARMA1 is a central regulator of NF-kappaB activation in lymphocytes. CARMA1 and Bcl10 functionally interact and control NF-kappaB signaling downstream of the T-cell receptor (TCR). Computational analysis of expression neighborhoods of CARMA1-Bcl10MALT 1 for enrichment in kinases identified calmodulin-dependent protein kinase II (CaMKII) as an important component of this pathway. Here we report that Ca(2+)/CaMKII is redistributed to the immune synapse following T-cell activation and that CaMKII is critical for NF-kappaB activation induced by TCR stimulation. Furthermore, CaMKII enhances CARMA1-induced NF-kappaB activation. Moreover, we have shown that CaMKII phosphorylates CARMA1 on Ser109 and that the phosphorylation facilitates the interaction between CARMA1 and Bcl10. These results provide a novel function for CaMKII in TCR signaling and CARMA1-induced NF-kappaB activation.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Guanilato Ciclase/metabolismo , NF-kappa B/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose/genética , Proteína 10 de Linfoma CCL de Células B , Proteínas Adaptadoras de Sinalização CARD , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Caspases/genética , Caspases/metabolismo , Linhagem Celular , Guanilato Ciclase/genética , Humanos , Células Jurkat , Ativação Linfocitária , Dados de Sequência Molecular , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa , Mutagênese Sítio-Dirigida , NF-kappa B/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosforilação , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
8.
Mol Cell Biol ; 25(4): 1309-24, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15684383

RESUMO

Mitotic entry requires a major reorganization of the microtubule cytoskeleton. Nlp, a centrosomal protein that binds gamma-tubulin, is a G(2)/M target of the Plk1 protein kinase. Here, we show that human Nlp and its Xenopus homologue, X-Nlp, are also phosphorylated by the cell cycle-regulated Nek2 kinase. X-Nlp is a 213-kDa mother centriole-specific protein, implicating it in microtubule anchoring. Although constant in abundance throughout the cell cycle, it is displaced from centrosomes upon mitotic entry. Overexpression of active Nek2 or Plk1 causes premature displacement of Nlp from interphase centrosomes. Active Nek2 is also capable of phosphorylating and displacing a mutant form of Nlp that lacks Plk1 phosphorylation sites. Importantly, kinase-inactive Nek2 interferes with Plk1-induced displacement of Nlp from interphase centrosomes and displacement of endogenous Nlp from mitotic spindle poles, while active Nek2 stimulates Plk1 phosphorylation of Nlp in vitro. Unlike Plk1, Nek2 does not prevent association of Nlp with gamma-tubulin. Together, these results provide the first example of a protein involved in microtubule organization that is coordinately regulated at the G(2)/M transition by two centrosomal kinases. We also propose that phosphorylation by Nek2 may prime Nlp for phosphorylation by Plk1.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Ciclo Celular/fisiologia , Humanos , Rim/metabolismo , Microtúbulos/metabolismo , Dados de Sequência Molecular , Quinases Relacionadas a NIMA , Fosforilação , Proteínas Proto-Oncogênicas , Tubulina (Proteína)/metabolismo , Células Tumorais Cultivadas , Xenopus laevis , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA