Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(5): e1012190, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38805549

RESUMO

The human immunodeficiency virus (HIV) envelope protein (Env) mediates viral entry into host cells and is the primary target for the humoral immune response. Env is extensively glycosylated, and these glycans shield underlying epitopes from neutralizing antibodies. The glycosylation of Env is influenced by the type of host cell in which the virus is produced. Thus, HIV is distinctly glycosylated by CD4+ T cells, the major target cells, and macrophages. However, the specific differences in glycosylation between viruses produced in these cell types have not been explored at the molecular level. Moreover, it remains unclear whether the production of HIV in CD4+ T cells or macrophages affects the efficiency of viral spread and resistance to neutralization. To address these questions, we employed the simian immunodeficiency virus (SIV) model. Glycan analysis implied higher relative levels of oligomannose-type N-glycans in SIV from CD4+ T cells (T-SIV) compared to SIV from macrophages (M-SIV), and the complex-type N-glycans profiles seem to differ between the two viruses. Notably, M-SIV demonstrated greater infectivity than T-SIV, even when accounting for Env incorporation, suggesting that host cell-dependent factors influence infectivity. Further, M-SIV was more efficiently disseminated by HIV binding cellular lectins. We also evaluated the influence of cell type-dependent differences on SIV's vulnerability to carbohydrate binding agents (CBAs) and neutralizing antibodies. T-SIV demonstrated greater susceptibility to mannose-specific CBAs, possibly due to its elevated expression of oligomannose-type N-glycans. In contrast, M-SIV exhibited higher susceptibility to neutralizing sera in comparison to T-SIV. These findings underscore the importance of host cell-dependent attributes of SIV, such as glycosylation, in shaping both infectivity and the potential effectiveness of intervention strategies.


Assuntos
Anticorpos Neutralizantes , Linfócitos T CD4-Positivos , Macrófagos , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Vírus da Imunodeficiência Símia/imunologia , Glicosilação , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Animais , Macrófagos/virologia , Macrófagos/imunologia , Macrófagos/metabolismo , Anticorpos Neutralizantes/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Humanos , Macaca mulatta , Polissacarídeos/metabolismo , Polissacarídeos/imunologia
2.
Commun Biol ; 6(1): 312, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959410

RESUMO

Human plasma transferrin (Tf) N-glycosylation has been mostly studied as a marker for congenital disorders of glycosylation, alcohol abuse, and hepatocellular carcinoma. However, inter-individual variability of Tf N-glycosylation is not known, mainly due to technical limitations of Tf isolation in large-scale studies. Here, we present a highly specific robust high-throughput approach for Tf purification from human blood plasma and detailed characterization of Tf N-glycosylation on the level of released glycans by ultra-high-performance liquid chromatography based on hydrophilic interactions and fluorescence detection (HILIC-UHPLC-FLD), exoglycosidase sequencing, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). We perform a large-scale comparative study of Tf and immunoglobulin G (IgG) N-glycosylation analysis in two human populations and demonstrate that Tf N-glycosylation is associated with age and sex, along with multiple biochemical and physiological traits. Observed association patterns differ compared to the IgG N-glycome corroborating tissue-specific N-glycosylation and specific N-glycans' role in their distinct physiological functions.


Assuntos
Imunoglobulina G , Processamento de Proteína Pós-Traducional , Transferrina , Humanos , Glicosilação , Ensaios de Triagem em Larga Escala , Imunoglobulina G/sangue , Imunoglobulina G/química , Transferrina/química , Transferrina/isolamento & purificação , Polissacarídeos/análise
3.
MAbs ; 14(1): 2132977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36239533

RESUMO

The α-Gal epitope consisting of the terminal trisaccharide Galα1,3Galß1,4GlcNAc exposed on cell or protein surfaces can cause severe immune reactions, such as hypersensitivity reactions, in humans. This epitope is also called the xenotransplantation epitope because it is one of the main reasons for the rejection of non-human organ transplants by the human innate immune response. Recombinant therapeutic proteins expressed in murine cell lines may contain α-Gal epitopes, and therefore their absence or presence needs to be tightly monitored to minimize any undesired adverse effects. The analytical identification of α-Gal epitopes in glycoproteins using the common standard techniques based on liquid chromatography and mass spectrometry is challenging, mainly due to the isobaricity of hexose stereoisomers. Here, we present a straightforward NMR approach to detect the presence of α-Gal in biotherapeutics based on a quick screen with sensitive 1H-1H TOCSY spectra followed by a confirmation using 1H-13C HSQC spectra.Abbreviations: α-Gal: α1,3-linked galactose; AGC: automatic gain control; CHO: Chinese hamster ovary; CE: capillary electrophoreses coupled to mass spectrometry; COSY: correlation spectroscopy; DSS: 2,2-dimethyl-2-silapentane-5-sulfonate; DTT: dithiothreitol; GlcNAc: N-acetyl glusomamine; HCD: higher-energy collisional dissociation; HMBC: heteronuclear multiple-bond correlation; HPLC: high-performance liquid chromatography; HSQC: heteronuclear single-quantum corre; LacNAc: N-acetyl lactosamine; mAb: monoclonal antibody; MS: mass spectrometry; NMR: nuclear magnetic resonance; NOESY: 2D) nuclear Overhauser spectroscopy; PEG: polyethylenglycol; pH*: observed pH meter reading without correction for isotope effects; PTM: post-translational modification; TCEP: tris(2-carboxyethyl) phosphine hydrochloride; TOCSY: total correlation spectroscopy; xCGE-LIF: multiplex capillary gel electrophoresis with laser-induced fluorescence detection.


Assuntos
Anticorpos Monoclonais , Antineoplásicos Imunológicos , Animais , Células CHO , Cricetinae , Cricetulus , Ditiotreitol , Epitopos , Galactose/química , Espectroscopia de Ressonância Magnética , Camundongos , Trissacarídeos
4.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445776

RESUMO

Different manufacturing processes and storage conditions of biotherapeutics can lead to a significant variability in drug products arising from chemical and enzymatic post-translational modifications (PTMs), resulting in the co-existence of a plethora of proteoforms with different physicochemical properties. To unravel the heterogeneity of these proteoforms, novel approaches employing strong cation-exchange (SCX) high-performance liquid chromatography (HPLC) hyphenated to mass spectrometry (MS) using a pH gradient of volatile salts have been developed in recent years. Here, we apply an established SCX-HPLC-MS method to characterize and compare two rituximab-based biotherapeutics, the originator MabThera® and its Indian copy product Reditux™. The study assessed molecular differences between the two drug products in terms of C-terminal lysine variants, glycosylation patterns, and other basic and acidic variants. Overall, MabThera® and Reditux™ displayed differences at the molecular level. MabThera® showed a higher degree of galactosylated and sialylated glycoforms, while Reditux™ showed increased levels of oligomannose and afucosylated glycoforms. Moreover, the two drug products showed differences in terms of basic variants such as C-terminal lysine and N-terminal truncation, present in Reditux™ but not in MabThera®. This study demonstrates the capability of this fast SCX-HPLC-MS approach to compare different drug products and simultaneously assess some of their quality attributes.


Assuntos
Anticorpos Monoclonais/química , Antineoplásicos Imunológicos/química , Cátions/química , Rituximab/química , Medicamentos Biossimilares/química , Cromatografia de Afinidade/métodos , Cromatografia Líquida de Alta Pressão/métodos , Glicosilação , Espectrometria de Massas/métodos
5.
Sci Rep ; 11(1): 5147, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664361

RESUMO

Here, we present for the first time, a site-specific N-glycosylation analysis of proteins from a Brazilian Zika virus (ZIKV) strain. The virus was propagated with high yield in an embryo-derived stem cell line (EB66, Valneva SE), and concentrated by g-force step-gradient centrifugation. Subsequently, the sample was proteolytically digested with different enzymes, measured via a LC-MS/MS-based workflow, and analyzed in a semi-automated way using the in-house developed glyXtoolMS software. The viral non-structural protein 1 (NS1) was glycosylated exclusively with high-mannose structures on both potential N-glycosylation sites. In case of the viral envelope (E) protein, no specific N-glycans could be identified with this method. Nevertheless, N-glycosylation could be proved by enzymatic de-N-glycosylation with PNGase F, resulting in a strong MS-signal of the former glycopeptide with deamidated asparagine at the potential N-glycosylation site N444. This confirmed that this site of the ZIKV E protein is highly N-glycosylated but with very high micro-heterogeneity. Our study clearly demonstrates the progress made towards site-specific N-glycosylation analysis of viral proteins, i.e. for Brazilian ZIKV. It allows to better characterize viral isolates, and to monitor glycosylation of major antigens. The method established can be applied for detailed studies regarding the impact of protein glycosylation on antigenicity and human pathogenicity of many viruses including influenza virus, HIV and corona virus.


Assuntos
Glicosilação , Proteínas não Estruturais Virais/genética , Infecção por Zika virus/genética , Zika virus/genética , Animais , Asparagina/genética , Brasil , Linhagem Celular , Chlorocebus aethiops , Cromatografia Líquida , Humanos , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Espectrometria de Massas em Tandem , Células Vero , Proteínas do Envelope Viral/genética , Replicação Viral/genética , Zika virus/patogenicidade , Infecção por Zika virus/virologia
6.
J Biotechnol ; 322: 54-65, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32653637

RESUMO

A wide range of glycoproteins can be recombinantly expressed in aglycosylated forms in bacterial and cell-free production systems. To investigate the effect of glycosylation of these proteins on receptor binding, stability, efficacy as drugs, pharmacodynamics and pharmacokinetics, an efficient glycosylation platform is required. Here, we present a cell-free synthetic platform for the in vitro N-glycosylation of peptides mimicking the endoplasmic reticulum (ER) glycosylation machinery of eukaryotes. The one-pot, two compartment multi-enzyme cascade consisting of eight recombinant enzymes including the three Leloir glycosyltransferases, Alg1, Alg2 and Alg11, expressed in E. coli and S. cerevisiae, respectively, has been engineered to produce the core lipid-linked (LL) oligosaccharide mannopentaose-di-(N-acetylglucosamine) (LL-Man5). Pythanol (C20H42O), a readily available alcohol consisting of regular isoprenoid units, was utilized as the lipid anchor. As part of the cascade, GDP-mannose was de novo produced from the inexpensive substrates ADP, polyphosphate and mannose. To prevent enzyme inhibition, the nucleotide sugar cascade and the glycosyltransferase were segregated into two compartments by a cellulose ester membrane with 3.5 kDa cut-off allowing for the effective diffusion of GDP-mannose across compartments. Finally, as a proof-of-principle, pythanyl-linked Man5 and the single-subunit oligosaccharyltransferase Trypanosoma brucei STT3A expressed in Sf9 insect cells were used to in vitro N-glycosylate a synthetic peptide of ten amino acids bearing the eukaryotic consensus motif N-X-S/T.


Assuntos
Enzimas , Glicopeptídeos , Lipopolissacarídeos/metabolismo , Biologia Sintética/métodos , Animais , Biocatálise , Sistema Livre de Células/enzimologia , Sistema Livre de Células/metabolismo , Dissacarídeos/química , Dissacarídeos/metabolismo , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/metabolismo , Enzimas/genética , Enzimas/metabolismo , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Glicosilação , Lipopolissacarídeos/química , Células Sf9
7.
Glycobiology ; 30(9): 679-694, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32149347

RESUMO

Protein glycosylation impacts the development and function of innate immune cells. The glycophenotypes and the glycan remodelling associated with the maturation of macrophages from monocytic precursor populations remain incompletely described. Herein, label-free porous graphitised carbon-liquid chromatography-tandem mass spectrometry (PGC-LC-MS/MS) was employed to profile with high resolution the N- and O-glycome associated with human monocyte-to-macrophage transition. Primary blood-derived CD14+ monocytes were differentiated ex vivo in the absence of strong anti- and proinflammatory stimuli using a conventional 7-day granulocyte-macrophage colony-stimulating factor differentiation protocol with longitudinal sampling. Morphology and protein expression monitored by light microscopy and proteomics validated the maturation process. Glycomics demonstrated that monocytes and macrophages display similar N-glycome profiles, comprising predominantly paucimannosidic (Man1-3GlcNAc2Fuc0-1, 22.1-30.8%), oligomannosidic (Man5-9GlcNAc2, 29.8-35.7%) and α2,3/6-sialylated complex-type N-glycans with variable core fucosylation (27.6-39.1%). Glycopeptide analysis validated conjugation of these glycans to human proteins, while quantitative proteomics monitored the glycoenzyme expression levels during macrophage differentiation. Significant interperson glycome variations were observed suggesting a considerable physiology-dependent or heritable heterogeneity of CD14+ monocytes. Only few N-glycome changes correlated with the monocyte-to-macrophage transition across donors including decreased core fucosylation and reduced expression of mannose-terminating (paucimannosidic-/oligomannosidic-type) N-glycans in macrophages, while lectin flow cytometry indicated that more dramatic cell surface glycan remodelling occurs during maturation. The less heterogeneous core 1-rich O-glycome showed a minor decrease in core 2-type O-glycosylation but otherwise remained unchanged with macrophage maturation. This high-resolution glycome map underpinning normal monocyte-to-macrophage transition, the most detailed to date, aids our understanding of the molecular makeup pertaining to two vital innate immune cell types and forms an important reference for future glycoimmunological studies.


Assuntos
Macrófagos/metabolismo , Monócitos/metabolismo , Polissacarídeos/metabolismo , Cromatografia Líquida , Glicômica , Glicopeptídeos/análise , Glicosilação , Humanos , Polissacarídeos/química , Espectrometria de Massas em Tandem
8.
Cell Tissue Res ; 375(2): 507-529, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30259139

RESUMO

The subcommissural organ (SCO) is an ancient and conserved brain gland secreting into cerebrospinal fluid (CSF) glycoproteins that form the Reissner fiber (RF). The present investigation was designed to further investigate the dynamic of the biosynthetic process of RF glycoproteins prior and after their release into the CSF, to identify the RF proteome and N-glycome and to clarify the mechanism of assembly of RF glycoproteins. Various methodological approaches were used: biosynthetic labelling injecting 35S-cysteine and 3H-galactose into the CSF, injection of antibodies against galectin-1 into the cerebrospinal fluid, light and electron microscopical methods; isolated bovine RF was used for proteome analyses by mass spectrometry and glycome analysis by xCGE-LIF. The biosynthetic labelling study further supported that a small pool of SCO-spondin molecules rapidly enter the secretory pathways after its synthesis, while most of the SCO-spondin molecules are stored in the rough endoplasmic reticulum for hours or days before entering the secretory pathway and being released to assemble into RF. The proteomic analysis of RF revealed clusterin and galectin-1 as partners of SCO-spondin; the in vivo use of anti-galectin-1 showed that this lectin is essential for the assembly of RF. Galectin-1 is not secreted by the SCO but evidence was obtained that it would be secreted by multiciliated ependymal cells lying close to the SCO. Further, a surprising variety and complexity of glycan structures were identified in the RF N-glycome that further expands the potential functions of RF to a level not previously envisaged. A model of the macromolecular organization of Reissner fiber is proposed.


Assuntos
Glicoproteínas/metabolismo , Órgão Subcomissural/fisiologia , Animais , Bovinos , Cisteína/metabolismo , Citoplasma/metabolismo , Epêndima/citologia , Epêndima/metabolismo , Galactose/metabolismo , Galectina 1/metabolismo , Glicoproteínas/ultraestrutura , Glicosilação , Masculino , Polissacarídeos/química , Polissacarídeos/metabolismo , Ratos Sprague-Dawley , Via Secretória , Coloração e Rotulagem , Órgão Subcomissural/ultraestrutura , Radioisótopos de Enxofre/metabolismo , Trítio/metabolismo
9.
J Biotechnol ; 283: 120-129, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30044949

RESUMO

In spite of huge endeavors in cell line engineering to produce glycoproteins with desired and uniform glycoforms, it is still not possible in vivo. Alternatively, in vitro glycoengineering can be used for the modification of glycans. However, in vitro glycoengineering relies on expensive nucleotide sugars, such as uridine 5'-diphospho-N-acetylglucosamine (UDP-GlcNAc) which serves as GlcNAc donor for the synthesis of various glycans. In this work, we present a systematic study for the cell-free de novo synthesis and regeneration of UDP-GlcNAc from polyphosphate, UMP and GlcNAc by a cascade of five enzymes (N-acetylhexosamine kinase (NahK), Glc-1P uridyltransferase (GalU), uridine monophosphate kinase (URA6), polyphosphate kinase (PPK3), and inorganic diphosphatase (PmPpA). All enzymes were expressed in E. coli BL21 Gold (DE3) and purified using immobilized metal affinity chromatography (IMAC). Results from one-pot experiments demonstrate the successful production of UDP-GlcNAc with a yield approaching 100%. The highest volumetric productivity of the cascade was about 0.81 g L-1  h-1 of UDP-GlcNAc. A simple model based on mass action kinetics was sufficient to capture the dynamic behavior of the multienzyme pathway. Moreover, a design equation based on metabolic control analysis was established to investigate the effect of enzyme concentration on the UDP-GlcNAc flux and to demonstrate that the flux of UDP-GlcNAc can be controlled by means of the enzyme concentrations. The effect of temperature on the UDP-GlcNAc flux followed an Arrhenius equation and the optimal co-factor concentration (Mg2+) for high UDP-GlcNAc synthesis rates depended on the working temperature. In conclusion, the study covers the entire engineering process of a multienzyme cascade, i.e. pathway design, enzyme expression, enzyme purification, reaction kinetics and investigation of the influence of basic parameters (temperature, co-factor concentration, enzyme concentration) on the synthesis rate. Thus, the study lays the foundation for future cascade optimization, preparative scale UDP-GlcNAc synthesis and for in situ coupling of the network with UDP-GlcNAc transferases to efficiently regenerate UDP-GlcNAc. Hence, this study provides a further step towards cost-effective in vitro glycoengineering of antibodies and other glycosylated proteins.


Assuntos
Sistema Livre de Células/metabolismo , Enzimas/metabolismo , Uridina Difosfato N-Acetilglicosamina/biossíntese , Vias Biossintéticas , Enzimas/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Cinética , Núcleosídeo-Fosfato Quinase/genética , Núcleosídeo-Fosfato Quinase/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Temperatura
10.
Gastroenterology ; 155(3): 829-843, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29792883

RESUMO

BACKGROUND & AIMS: Biomarkers are needed for early detection of Crohn's disease (CD) and ulcerative colitis (UC) or to predict patient outcomes. Glycosylation is a common and complex posttranslational modification of proteins that affects their structure and activity. We compared plasma N-glycosylation profiles between patients with CD or UC and healthy individuals (controls). METHODS: We analyzed the total plasma N-glycomes of 2635 patients with inflammatory bowel diseases and 996 controls by mass spectrometry with a linkage-specific sialic acid derivatization technique. Plasma samples were acquired from 2 hospitals in Italy (discovery cohort, 1989 patients with inflammatory bowel disease [IBD] and 570 controls) and 1 medical center in the United States (validation cohort, 646 cases of IBD and 426 controls). Sixty-three glycoforms met our criteria for relative quantification and were extracted from the raw data with the software MassyTools. Common features shared by the glycan compositions were combined in 78 derived traits, including the number of antennae of complex-type glycans and levels of fucosylation, bisection, galactosylation, and sialylation. Associations of plasma N-glycomes with age, sex, CD, UC, and IBD-related parameters such as disease location, surgery and medication, level of C-reactive protein, and sedimentation rate were tested by linear and logistic regression. RESULTS: Plasma samples from patients with IBD had a higher abundance of large-size glycans compared with controls, a decreased relative abundance of hybrid and high-mannose structures, lower fucosylation, lower galactosylation, and higher sialylation (α2,3- and α2,6-linked). We could discriminate plasma from patients with CD from that of patients with UC based on higher bisection, lower galactosylation, and higher sialylation (α2,3-linked). Glycosylation patterns were associated with disease location and progression, the need for a more potent medication, and surgery. These results were replicated in a large independent cohort. CONCLUSIONS: We performed high-throughput analysis to compare total plasma N-glycomes of individuals with vs without IBD and to identify patterns associated with disease features and the need for treatment. These profiles might be used in diagnosis and for predicting patients' responses to treatment.


Assuntos
Colite Ulcerativa/sangue , Doença de Crohn/sangue , Polissacarídeos/sangue , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Colite Ulcerativa/diagnóstico , Doença de Crohn/diagnóstico , Progressão da Doença , Feminino , Glicosilação , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Processamento de Proteína Pós-Traducional
11.
Front Oncol ; 8: 70, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29619343

RESUMO

The glycome of one of the largest and most exposed human organs, the skin, as well as glycan changes associated with non-melanoma skin cancers have not been studied in detail to date. Skin cancers such as basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are among the most frequent types of cancers with rising incidence rates in the aging population. We investigated the healthy human skin N- and O-glycome and its changes associated with BCC and SCC. Matched patient samples were obtained from frozen biopsy and formalin-fixed paraffin-embedded tissue samples for glycomics analyses using two complementary glycomics approaches: porous graphitized carbon nano-liquid chromatography electro spray ionization tandem mass spectrometry and capillary gel electrophoresis with laser induced fluorescence detection. The human skin N-glycome is dominated by complex type N-glycans that exhibit almost similar levels of α2-3 and α2-6 sialylation. Fucose is attached exclusively to the N-glycan core. Core 1 and core 2 type O-glycans carried up to three sialic acid residues. An increase of oligomannose type N-glycans and core 2 type O-glycans was observed in BCC and SCC, while α2-3 sialylation levels were decreased in SCC but not in BCC. Furthermore, glycopeptide analyses provided insights into the glycoprotein candidates possibly associated with the observed N-glycan changes, with glycoproteins associated with binding events being the most frequently identified class.

12.
Biotechnol Bioeng ; 115(1): 192-205, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28922469

RESUMO

Glycosylation of proteins is a key function of the biosynthetic-secretory pathway in the endoplasmic reticulum (ER) and Golgi apparatus. Glycosylated proteins play a crucial role in cell trafficking and signaling, cell-cell adhesion, blood-group antigenicity, and immune response. In addition, the glycosylation of proteins is an important parameter in the optimization of many glycoprotein-based drugs such as monoclonal antibodies. In vitro glycoengineering of proteins requires glycosyltransferases as well as expensive nucleotide sugars. Here, we present a designed pathway consisting of five enzymes, glucokinase (Glk), phosphomannomutase (ManB), mannose-1-phosphate-guanyltransferase (ManC), inorganic pyrophosphatase (PmPpA), and 1-domain polyphosphate kinase 2 (1D-Ppk2) expressed in E. coli for the cell-free production and regeneration of GDP-mannose from mannose and polyphosphate with catalytic amounts of GDP and ADP. It was shown that GDP-mannose is produced at various conditions, that is pH 7-8, temperature 25-35°C and co-factor concentrations of 5-20 mM MgCl2 . The maximum reaction rate of GDP-mannose achieved was 2.7 µM/min at 30°C and 10 mM MgCl2 producing 566 nmol GDP-mannose after a reaction time of 240 min. With respect to the initial GDP concentration (0.8 mM) this is equivalent to a yield of 71%. Additionally, the cascade was coupled to purified, transmembrane-deleted Alg1 (ALG1ΔTM), the first mannosyltransferase in the ER-associated lipid-linked oligosaccharide (LLO) assembly. Thereby, in a one-pot reaction, phytanyl-PP-(GlcNAc)2 -Man1 was produced with efficient nucleotide sugar regeneration for the first time. Phytanyl-PP-(GlcNAc)2 -Man1 can serve as a substrate for the synthesis of LLO for the cell-free in vitro glycosylation of proteins. A high-performance anion exchange chromatography method with UV and conductivity detection (HPAEC-UV/CD) assay was optimized and validated to determine the enzyme kinetics. The established kinetic model enabled the optimization of the GDP-mannose regenerating cascade and can further be used to study coupling of the GDP-mannose cascade with glycosyltransferases. Overall, the study envisages a first step towards the development of a platform for the cell-free production of LLOs as precursors for in vitro glycoengineering of proteins.


Assuntos
Enzimas/metabolismo , Escherichia coli/genética , Guanosina Difosfato Manose/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas Recombinantes/metabolismo , Coenzimas/metabolismo , Enzimas/genética , Enzimas/isolamento & purificação , Escherichia coli/metabolismo , Expressão Gênica , Concentração de Íons de Hidrogênio , Cloreto de Magnésio/metabolismo , Manose/metabolismo , Polifosfatos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Temperatura
13.
Mol Cell Proteomics ; 15(2): 624-41, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26598643

RESUMO

Site-specific glycosylation analysis is key to investigate structure-function relationships of glycoproteins, e.g. in the context of antigenicity and disease progression. The analysis, though, is quite challenging and time consuming, in particular for O-glycosylated proteins. In consequence, despite their clinical and biopharmaceutical importance, many human blood plasma glycoproteins have not been characterized comprehensively with respect to their O-glycosylation. Here, we report on the site-specific O-glycosylation analysis of human blood plasma glycoproteins. To this end pooled human blood plasma of healthy donors was proteolytically digested using a broad-specific enzyme (Proteinase K), followed by a precipitation step, as well as a glycopeptide enrichment and fractionation step via hydrophilic interaction liquid chromatography, the latter being optimized for intact O-glycopeptides carrying short mucin-type core-1 and -2 O-glycans, which represent the vast majority of O-glycans on human blood plasma proteins. Enriched O-glycopeptide fractions were subjected to mass spectrometric analysis using reversed-phase liquid chromatography coupled online to an ion trap mass spectrometer operated in positive-ion mode. Peptide identity and glycan composition were derived from low-energy collision-induced dissociation fragment spectra acquired in multistage mode. To pinpoint the O-glycosylation sites glycopeptides were fragmented using electron transfer dissociation. Spectra were annotated by database searches as well as manually. Overall, 31 O-glycosylation sites and regions belonging to 22 proteins were identified, the majority being acute-phase proteins. Strikingly, also 11 novel O-glycosylation sites and regions were identified. In total 23 O-glycosylation sites could be pinpointed. Interestingly, the use of Proteinase K proved to be particularly beneficial in this context. The identified O-glycan compositions most probably correspond to mono- and disialylated core-1 mucin-type O-glycans (T-antigen). The developed workflow allows the identification and characterization of the major population of the human blood plasma O-glycoproteome and our results provide new insights, which can help to unravel structure-function relationships. The data were deposited to ProteomeXchange PXD003270.


Assuntos
Proteínas de Fase Aguda/genética , Antígenos Virais de Tumores/genética , Glicopeptídeos/genética , Polissacarídeos/genética , Proteínas de Fase Aguda/biossíntese , Antígenos Virais de Tumores/sangue , Cromatografia de Fase Reversa , Glicopeptídeos/sangue , Glicosilação , Voluntários Saudáveis , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas , Mucina-1/sangue , Mucina-1/genética , Polissacarídeos/sangue
14.
J Virol ; 89(22): 11727-33, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26355090

RESUMO

Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) envelope (Env) proteins are extensively decorated with N-glycans, predominantly of the high-mannose type. However, it is unclear how high-mannose N-glycans on Env impact viral spread. We show that exclusive modification of SIV Env with these N-glycans reduces viral infectivity and abrogates mucosal transmission, despite increasing viral capture by immune cell lectins. Thus, high-mannose N-glycans have opposed effects on SIV infectivity and lectin reactivity, and a balance might be required for efficient mucosal transmission.


Assuntos
Produtos do Gene env/metabolismo , Mucosa/virologia , Polissacarídeos/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Vírus da Imunodeficiência Símia/patogenicidade , Animais , Linhagem Celular , Infecções por HIV/transmissão , Infecções por HIV/virologia , HIV-1/metabolismo , HIV-1/patogenicidade , Humanos , Macaca mulatta , Manose/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/metabolismo
15.
Proteomics ; 15(20): 3585-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26152594

RESUMO

With the development of high resolving mass spectrometers, metaproteomics evolved as a powerful tool to elucidate metabolic activity of microbial communities derived from full-scale biogas plants. Due to the vast complexity of these microbiomes, application of suitable fractionation methods are indispensable, but often turn out to be time and cost intense, depending on the method used for protein separation. In this study, centrifugal fractionation has been applied for fractionation of two biogas sludge samples to analyze proteins extracted from (i) crude fibers, (ii) suspended microorganisms, and (iii) secreted proteins in the supernatant using a gel-based approach followed by LC-MS/MS identification. This fast and easy method turned out to be beneficial to both the quality of SDS-PAGE and the identification of peptides and proteins compared to untreated samples. Additionally, a high functional metabolic pathway coverage was achieved by combining protein hits found exclusively in distinct fractions. Sample preparation using centrifugal fractionation influenced significantly the number and the types of proteins identified in the microbial metaproteomes. Thereby, comparing results from different proteomic or genomic studies, the impact of sample preparation should be considered. All MS data have been deposited in the ProteomeXchange with identifier PXD001508 (http://proteomecentral.proteomexchange.org/dataset/PXD001508).


Assuntos
Proteínas de Bactérias/genética , Peptídeos/genética , Proteoma/genética , Proteômica , Proteínas de Bactérias/química , Biocombustíveis , Peptídeos/química , Plantas/química , Plantas/genética , Esgotos , Espectrometria de Massas em Tandem
16.
Vaccine ; 33(35): 4269-80, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25891398

RESUMO

Adaptation of continuous cell lines to growth in suspension in a chemically defined medium has significant advantages for design and optimization in manufacturing of biologicals. In this work, changes in the protein expression level during a step-wise adaptation of an adherent Madin Darby canine kidney (MDCK) cell line to suspension growth were analyzed. Therefore, three cell line adaptations were performed independently. Two adaptations were monitored closely to characterize short term changes in protein expression levels after serum deprivation. In addition, initial stages of suspension growth were analyzed for both adaptations. The third adaptation involved MDCK suspension cells (MDCKSUS2) grown over an extended time period to achieve robust growth characteristics. Here, cells of the final stage of adaptation were compared with their parental cell line (MDCKADH). A combination of two dimensional differential gel electrophoresis for relative protein quantification and tandem mass spectrometry for protein identification enabled insights into cellular physiology. The two closely monitored cell line adaptations followed different routes regarding specific changes in protein expression but resulted in similar proteome profiles at the initial stages of suspension growth analyzed. Compared to the MDCKADH cells more than 90% of all changes in the protein expression level were identified after serum deprivation and were related to cytoskeletal structure, genetic information processing and cellular metabolism. Myosin proteins, involved in cellular detachment by actin-myosin contractile mechanisms were also differentially expressed. Interestingly, for both of the two adaptations, proteins linked for tumorigenicity, like lactoylglutathione lyase and sulfotransferase 1A1 were differentially expressed. In contrast, none of these proteins were differentially expressed for the MDCKSUS2 cell line. Overall, proteomic monitoring allowed identification of key proteins involved in adaptation from adherent to suspension growth. In addition, identified proteins related to tumorigenicity may represent markers to support cell clone selection at early stages of industrial cell line development.


Assuntos
Proliferação de Células , Proteoma/análise , Proteômica/métodos , Adaptação Fisiológica , Animais , Adesão Celular , Meios de Cultura Livres de Soro , Cães , Eletroforese em Gel Bidimensional , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Células Madin Darby de Rim Canino , Miosinas/genética , Miosinas/metabolismo , Espectrometria de Massas em Tandem
17.
Proteomics ; 12(12): 1893-901, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22623171

RESUMO

To improve the understanding of microbial behaviors in communities, proteomic tracking, an approach for relative quantification of species-specific population dynamics of mixed cultures, was developed. Therefore, a bacterial mixed culture was analyzed during batch cultivations with and without addition of the antibiotic Ceftazidime. The community was composed of Burkholderia cepacia, Pseudomonas aeruginosa, and Staphylococcus aureus, pathogens causing infections in cystic fibrosis patients. Gel-based proteomics and mass spectrometry were used to obtain qualitative and quantitative proteomic data. During cultivation, P. aeruginosa became dominant within the mixed culture while S. aureus was inhibited in growth. Analysis of samples - taken along cultivation - revealed about 270 differentially expressed proteins. Some of those proteins are related to bacterial interactions, response to antibiotic treatment or metabolic shifts. For instance, the enzymes PhzS(flavin-containing monooxygenase), PhzD (phenazine biosynthesis protein), and PhzG2 (pyridoxamine 5'-phosphate oxidase) indicated the production of the antibiotic pigment pyocyanine by P. aeruginosa that is related to oxidative stress and therefore, might inhibit growth of S. aureus. Overall, the strategy applied not only allows species-specific tracking of the community composition but also provides valuable insights into the behavior of mixed cultures.


Assuntos
Proteínas de Bactérias/análise , Técnicas Bacteriológicas/métodos , Interações Microbianas/fisiologia , Proteoma/análise , Proteômica/métodos , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Biomassa , Burkholderia cepacia/efeitos dos fármacos , Burkholderia cepacia/metabolismo , Ceftazidima/farmacologia , Técnicas de Cocultura , Farmacorresistência Bacteriana , Eletroforese em Gel Bidimensional , Interações Microbianas/efeitos dos fármacos , Proteoma/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo
18.
Proteomics ; 9(12): 3316-27, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19504497

RESUMO

Over the last years virus-host cell interactions were investigated in numerous studies. Viral strategies for evasion of innate immune response, inhibition of cellular protein synthesis and permission of viral RNA and protein production were disclosed. With quantitative proteome technology, comprehensive studies concerning the impact of viruses on the cellular machinery of their host cells at protein level are possible. Therefore, 2-D DIGE and nanoHPLC-nanoESI-MS/MS analysis were used to qualitatively and quantitatively determine the dynamic cellular proteome responses of two mammalian cell lines to human influenza A virus infection. A cell line used for vaccine production (MDCK) was compared with a human lung carcinoma cell line (A549) as a reference model. Analyzing 2-D gels of the proteomes of uninfected and influenza-infected host cells, 16 quantitatively altered protein spots (at least +/-1.7-fold change in relative abundance, p<0.001) were identified for both cell lines. Most significant changes were found for keratins, major components of the cytoskeleton system, and for Mx proteins, interferon-induced key components of the host cell defense. Time series analysis of infection processes allowed the identification of further proteins that are described to be involved in protein synthesis, signal transduction and apoptosis events. Most likely, these proteins are required for supporting functions during influenza viral life cycle or host cell stress response. Quantitative proteome-wide profiling of virus infection can provide insights into complexity and dynamics of virus-host cell interactions and may accelerate antiviral research and support optimization of vaccine manufacturing processes.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/metabolismo , Proteoma/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Proteínas do Citoesqueleto/metabolismo , Cães , Eletroforese em Gel Bidimensional , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/metabolismo , Vacinas contra Influenza/biossíntese , Influenza Humana/patologia , Influenza Humana/virologia , Proteoma/análise , Proteômica/métodos , Transdução de Sinais , Estresse Fisiológico , Espectrometria de Massas em Tandem
19.
Anal Chem ; 81(1): 443-52, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19125446

RESUMO

A new atmospheric pressure (AP)-MALDI-type interface has been developed based on a free liquid (FL) microbeam/microdroplets and a mid-infrared optical parametric oscillator (mid-IR OPO). The device is integrated into a standard on-line nanoESI interface. The generation of molecular ions in the gas phase is believed to be the result of a fast (explosive) laser-induced evaporative dispersion(not desorption) of the microbeam into statistically charged nanodroplets. Only the lowest charge states appear insignificant abundance in this type of experiment. Mass spectra of some common peptides have been acquired in positive ion mode, and the limit-of-detection of this first prototype (liquid microbeam setup) was evaluated to be 17 fmol per second. To improve the duty cycle and to reduce the sample consumption, a droplet-on-demand system was implemented (generating 100 pL droplets).With this setup, about 20 attomole of bradykinin were sufficient to achieve a signal-to-noise ratio better than five.This setup can be operated at flow rates down to 100 nL/min and represents a liquid MALDI alternative to the nanoESI. Our particular interest was the application of the developed ion source for on-line coupling of liquid chromatography with mass spectrometry. The flow rates(>100 microL/min), required for stable operation of the ion source in continuous liquid microbeam mode, matches perfectly the flow rate range of micro HPLC. Therefore, online LC/MS experiments have been realized, employing a microbore C18 reversed-phase column to separate an artificial peptide mixture and tryptic peptides of bovine serum albumin (performing a peptide mass fingerprint). In the latter case, sequence coverage of more than 90%has been achieved.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Peptídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Pressão Atmosférica , Bradicinina/química , Cromatografia Líquida de Alta Pressão/instrumentação , Raios Infravermelhos , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Peptídeos/química , Soroalbumina Bovina/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA