Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 25(12): 1086-1092, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30455434

RESUMO

Parathyroid hormone 1 receptor (PTH1R) is a class B multidomain G-protein-coupled receptor (GPCR) that controls calcium homeostasis. Two endogenous peptide ligands, parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP), activate the receptor, and their analogs teriparatide and abaloparatide are used in the clinic to increase bone formation as an effective yet costly treatment for osteoporosis. Activation of PTH1R involves binding of the peptide ligand to the receptor extracellular domain (ECD) and transmembrane domain (TMD), a hallmark of class B GPCRs. Here, we present the crystal structure of human PTH1R in complex with a peptide agonist at 2.5-Å resolution, allowing us to delineate the agonist binding mode for this receptor and revealing molecular details within conserved structural motifs that are critical for class B receptor function. Thus, this study provides structural insight into the function of PTH1R and extends our understanding of this therapeutically important class of GPCRs.


Assuntos
Receptor Tipo 1 de Hormônio Paratireóideo/química , Sequência de Aminoácidos , Biomimética , Cristalografia por Raios X , Humanos , Modelos Moleculares , Hormônio Paratireóideo/química , Peptídeos/metabolismo , Ligação Proteica
2.
Nature ; 546(7657): 254-258, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28562585

RESUMO

Glucagon-like peptide 1 (GLP-1) regulates glucose homeostasis through the control of insulin release from the pancreas. GLP-1 peptide agonists are efficacious drugs for the treatment of diabetes. To gain insight into the molecular mechanism of action of GLP-1 peptides, here we report the crystal structure of the full-length GLP-1 receptor bound to a truncated peptide agonist. The peptide agonist retains an α-helical conformation as it sits deep within the receptor-binding pocket. The arrangement of the transmembrane helices reveals hallmarks of an active conformation similar to that observed in class A receptors. Guided by this structural information, we design peptide agonists with potent in vivo activity in a mouse model of diabetes.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/química , Peptídeos/química , Peptídeos/farmacologia , Animais , Sítios de Ligação , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Masculino , Camundongos , Modelos Moleculares , Peptídeos/metabolismo , Conformação Proteica , Ratos , Receptores de Hormônio Liberador da Corticotropina/química , Receptores de Glucagon/química
3.
Nature ; 545(7652): 112-115, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28445455

RESUMO

Protease-activated receptors (PARs) are a family of G-protein-coupled receptors (GPCRs) that are irreversibly activated by proteolytic cleavage of the N terminus, which unmasks a tethered peptide ligand that binds and activates the transmembrane receptor domain, eliciting a cellular cascade in response to inflammatory signals and other stimuli. PARs are implicated in a wide range of diseases, such as cancer and inflammation. PARs have been the subject of major pharmaceutical research efforts but the discovery of small-molecule antagonists that effectively bind them has proved challenging. The only marketed drug targeting a PAR is vorapaxar, a selective antagonist of PAR1 used to prevent thrombosis. The structure of PAR1 in complex with vorapaxar has been reported previously. Despite sequence homology across the PAR isoforms, discovery of PAR2 antagonists has been less successful, although GB88 has been described as a weak antagonist. Here we report crystal structures of PAR2 in complex with two distinct antagonists and a blocking antibody. The antagonist AZ8838 binds in a fully occluded pocket near the extracellular surface. Functional and binding studies reveal that AZ8838 exhibits slow binding kinetics, which is an attractive feature for a PAR2 antagonist competing against a tethered ligand. Antagonist AZ3451 binds to a remote allosteric site outside the helical bundle. We propose that antagonist binding prevents structural rearrangements required for receptor activation and signalling. We also show that a blocking antibody antigen-binding fragment binds to the extracellular surface of PAR2, preventing access of the tethered ligand to the peptide-binding site. These structures provide a basis for the development of selective PAR2 antagonists for a range of therapeutic uses.


Assuntos
Receptor PAR-2/química , Receptor PAR-2/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Anticorpos Bloqueadores/química , Anticorpos Bloqueadores/farmacologia , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzodioxóis/química , Benzodioxóis/farmacologia , Álcoois Benzílicos/química , Álcoois Benzílicos/farmacologia , Cristalografia por Raios X , Humanos , Imidazóis/química , Imidazóis/farmacologia , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/farmacologia , Cinética , Ligantes , Modelos Moleculares , Receptor PAR-2/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
4.
Nature ; 540(7633): 462-465, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27926729

RESUMO

Chemokines and their G-protein-coupled receptors play a diverse role in immune defence by controlling the migration, activation and survival of immune cells. They are also involved in viral entry, tumour growth and metastasis and hence are important drug targets in a wide range of diseases. Despite very significant efforts by the pharmaceutical industry to develop drugs, with over 50 small-molecule drugs directed at the family entering clinical development, only two compounds have reached the market: maraviroc (CCR5) for HIV infection and plerixafor (CXCR4) for stem-cell mobilization. The high failure rate may in part be due to limited understanding of the mechanism of action of chemokine antagonists and an inability to optimize compounds in the absence of structural information. CC chemokine receptor type 9 (CCR9) activation by CCL25 plays a key role in leukocyte recruitment to the gut and represents a therapeutic target in inflammatory bowel disease. The selective CCR9 antagonist vercirnon progressed to phase 3 clinical trials in Crohn's disease but efficacy was limited, with the need for very high doses to block receptor activation. Here we report the crystal structure of the CCR9 receptor in complex with vercirnon at 2.8 Å resolution. Remarkably, vercirnon binds to the intracellular side of the receptor, exerting allosteric antagonism and preventing G-protein coupling. This binding site explains the need for relatively lipophilic ligands and describes another example of an allosteric site on G-protein-coupled receptors that can be targeted for drug design, not only at CCR9, but potentially extending to other chemokine receptors.


Assuntos
Receptores CCR/antagonistas & inibidores , Receptores CCR/química , Sulfonamidas/química , Sulfonamidas/farmacologia , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Sítio Alostérico/genética , Sequência Conservada , Cristalografia por Raios X , Citoplasma/metabolismo , Desenho de Fármacos , Proteínas Heterotriméricas de Ligação ao GTP/antagonistas & inibidores , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Ligantes , Modelos Moleculares , Mutagênese , Receptores CCR/genética , Receptores CCR5/química , Receptores CXCR4/química
5.
Curr Biol ; 21(13): 1152-7, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21700459

RESUMO

Cyclin-dependent kinases (CDKs) play crucial roles in promoting DNA replication and preventing rereplication in eukaryotic cells [1-4]. In budding yeast, CDKs promote DNA replication by phosphorylating two proteins, Sld2 and Sld3, which generates binding sites for pairs of BRCT repeats (breast cancer gene 1 [BRCA1] C terminal repeats) in the Dpb11 protein [5, 6]. The Sld3-Dpb11-Sld2 complex generated by CDK phosphorylation is required for the assembly and activation of the Cdc45-Mcm2-7-GINS (CMG) replicative helicase. In response to DNA replication stress, the interaction between Sld3 and Dpb11 is blocked by the checkpoint kinase Rad53 [7], which prevents late origin firing [7, 8]. Here we show that the two key CDK sites in Sld3 are conserved in the human Sld3-related protein Treslin/ticrr and are essential for DNA replication. Moreover, phosphorylation of these two sites mediates interaction with the orthologous pair of BRCT repeats in the human Dpb11 ortholog, TopBP1. Finally, we show that DNA replication stress prevents the interaction between Treslin/ticrr and TopBP1 via the Chk1 checkpoint kinase. Our results indicate that Treslin/ticrr is a genuine ortholog of Sld3 and that the Sld3-Dpb11 interaction has remained a critical nexus of S phase regulation through eukaryotic evolution.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Replicação do DNA/fisiologia , Evolução Molecular , Proteínas Fúngicas/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Leveduras/genética , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem , Sequência Conservada , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/fisiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas Quinases/metabolismo , Proteínas Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
6.
J Mol Biol ; 387(2): 306-19, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19356588

RESUMO

ATP-driven remodelling of initial RNA polymerase (RNAP) promoter complexes occurs as a major post recruitment strategy used to control gene expression. Using a model-enhancer-dependent bacterial system (sigma54-RNAP, Esigma54) and a slowly hydrolysed ATP analogue (ATPgammaS), we provide evidence for a nucleotide-dependent temporal pathway leading to DNA melting involving a small set of sigma54-DNA conformational states. We demonstrate that the ATP hydrolysis-dependent remodelling of Esigma54 occurs in at least two distinct temporal steps. The first detected remodelling phase results in changes in the interactions between the promoter specificity sigma54 factor and the promoter DNA. The second detected remodelling phase causes changes in the relationship between the promoter DNA and the core RNAP catalytic beta/beta' subunits, correlating with the loading of template DNA into the catalytic cleft of RNAP. It would appear that, for Esigma54 promoters, loading of template DNA within the catalytic cleft of RNAP is dependent on fast ATP hydrolysis steps that trigger changes in the beta' jaw domain, thereby allowing acquisition of the open complex status.


Assuntos
Desnaturação de Ácido Nucleico , RNA Polimerase Sigma 54/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Sequência de Bases , DNA Bacteriano/metabolismo , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Hidrólise , Klebsiella pneumoniae , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Conformação de Ácido Nucleico , Conformação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/metabolismo , RNA Polimerase Sigma 54/genética , Transativadores/metabolismo , Transcrição Gênica
7.
J Mol Biol ; 381(1): 1-12, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18599077

RESUMO

AAA(+) proteins are ubiquitous mechanochemical ATPases that use energy from ATP hydrolysis to remodel their versatile substrates. The AAA(+) characteristic hexameric ring assemblies raise important questions about if and how six often identical subunits coordinate hydrolysis and associated motions. The PspF AAA(+) domain, PspF(1-275), remodels the bacterial sigma(54)-RNA polymerase to activate transcription. Analysis of ATP substrate inhibition kinetics on ATP hydrolysis in hexameric PspF(1-275) indicates negative homotropic effects between subunits. Functional determinants required for allosteric control identify: (i) an important link between the ATP bound ribose moiety and the SensorII motif that would allow nucleotide-dependent *-helical */beta subdomain dynamics; and (ii) establishes a novel regulatory role for the SensorII helix in PspF, which may apply to other AAA(+) proteins. Consistent with functional data, homotropic control appears to depend on nucleotide state-dependent subdomain angles imposing dynamic symmetry constraints in the AAA(+) ring. Homotropic coordination is functionally important to remodel the sigma(54) promoter. We propose a structural symmetry-based model for homotropic control in the AAA(+) characteristic ring architecture.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Cromatografia em Gel , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Hidrólise , Cinética , Modelos Moleculares , Mutação/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Polimerase Sigma 54/genética , RNA Polimerase Sigma 54/metabolismo , Transativadores/química , Transativadores/genética , Transativadores/isolamento & purificação , Transativadores/metabolismo
8.
Biochem Soc Trans ; 36(Pt 1): 83-8, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18208391

RESUMO

bEBPs (bacterial enhancer-binding proteins) are AAA+ (ATPase associated with various cellular activities) transcription activators that activate gene transcription through a specific bacterial sigma factor, sigma(54). Sigma(54)-RNAP (RNA polymerase) binds to promoter DNA sites and forms a stable closed complex, unable to proceed to transcription. The closed complex must be remodelled using energy from ATP hydrolysis provided by bEBPs to melt DNA and initiate transcription. Recently, large amounts of structural and biochemical data have produced insights into how ATP hydrolysis within the active site of bEBPs is coupled to the re-modelling of the closed complex. In the present article, we review some of the key nucleotides, mutations and techniques used and how they have contributed towards our understanding of the function of bEBPs.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Hidrólise , Nucleotídeos/metabolismo , Conformação Proteica
9.
J Mol Biol ; 375(5): 1206-11, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18082766

RESUMO

Mechanochemical proteins rely on ATP hydrolysis to establish the different functional states required for their biological output. Studying the transient functional intermediate states these proteins adopt as they progress through the ATP hydrolysis cycle is key to understanding the molecular basis of their mechanism. Many of these intermediates have been successfully 'trapped' and functionally characterised using ATP analogues. Here, we present a new nucleotide analogue, AMP-AlF(x), which traps PspF, a bacterial enhancer binding protein, in a stable complex with the sigma(54)-RNA polymerase holoenzyme. The crystal structure of AMP-AlF(x)*PspF(1-275) provides new information on protein-nucleotide interactions and suggests that the beta and gamma phosphates are more important than the alpha phosphate in terms of sensing nucleotide bound states. In addition, functional data obtained with AMP-AlF(x) establish distinct roles for the conserved catalytic AAA(+) (ATPases associated with various cellular activities) residues, suggesting that AMP-AlF(x) is a powerful new tool to study AAA(+) protein family members and, more generally, Walker motif ATPases.


Assuntos
Monofosfato de Adenosina/metabolismo , Compostos de Alumínio/metabolismo , Fluoretos/metabolismo , Nucleotídeos/metabolismo , Compostos Organometálicos/metabolismo , Transcrição Gênica , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Cristalografia por Raios X , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cloreto de Magnésio/metabolismo , Modelos Químicos , Regiões Promotoras Genéticas , RNA Polimerase Sigma 54/metabolismo , Sinorhizobium meliloti/genética , Análise Espectral Raman , Transativadores/genética , Transativadores/metabolismo , Difração de Raios X
10.
Mol Microbiol ; 66(3): 583-95, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17883390

RESUMO

The bacterial enhancer binding proteins (bEBP) are members of the AAA+ protein family and have a highly conserved 'DE' Walker B motif thought to be involved in the catalytic function of the protein with an active role in nucleotide hydrolysis. Based on detailed structural data, we analysed the functionality of the conserved 'DE' Walker B motif of a bEBP model, phage shock protein F (PspF), to investigate the role of these residues in the sigma(54)-dependent transcription activation process. We established their role in the regulation of PspF self-association and in the relay of the ATPase activity to the remodelling of an RNA polymerase.promoter complex (Esigma(54).DNA). Specific substitutions of the conserved glutamate (E) allowed the identification of new functional ATP.bEBP.Esigma(54) complexes which are stable and transcriptionally competent, providing a new tool to study the initial events of the sigma(54)-dependent transcription activation process. In addition, we show the importance of this glutamate residue in sigma(54).DNA conformation sensing, permitting the identification of new intermediate stages within the transcription activation pathway.


Assuntos
Proteínas de Ligação a DNA/genética , Nucleotídeos/metabolismo , Ativação Transcricional/genética , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidrólise , Dados de Sequência Molecular , Estrutura Terciária de Proteína , RNA Polimerase Sigma 54/química , RNA Polimerase Sigma 54/genética , RNA Polimerase Sigma 54/metabolismo , Transativadores/química , Transativadores/genética , Transativadores/metabolismo
11.
J Biol Chem ; 282(13): 9825-9833, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17242399

RESUMO

Transcriptional initiation invariably involves the transition from a closed RNA polymerase (RNAP) promoter complex to a transcriptional competent open complex. Activators of the bacterial sigma(54)-RNAP are AAA+ proteins that couple ATP hydrolysis to restructure the sigma(54)-RNAP promoter complex. Structures of the sigma(54) activator PspF AAA+ domain (PspF(1-275)) bound to sigma(54) show two loop structures proximal to sigma(54) as follows: the sigma(54) contacting the GAFTGA loop 1 structure and loop 2 that classifies sigma(54) activators as pre-sensor 1 beta-hairpin AAA+ proteins. We report activities for PspF(1-275) mutated in the AAA+ conserved sensor I threonine/asparagine motif (PspF(1-275)(T148A), PspF(1-275)(N149A), and PspF(1-275)(N149S)) within the second region of homology. We show that sensor I asparagine plays a direct role in ATP hydrolysis. However, low hydrolysis rates are sufficient for functional output in vitro. In contrast, PspF(1-275)(T148A) has severe defects at the distinct step of sigma(54) promoter restructuring. This defect is not because of the failure of PspF(1-275)(T148A) to stably engage with the closed sigma(54) promoter, indicating (i) an important role in ATP hydrolysis-associated motions during energy coupling for remodeling and (ii) distinguishing PspF(1-275)(T148A) from PspF(1-275) variants involved in signaling to the GAFTGA loop 1, which fail to stably engage with the promoter. Activities of loop 2 PspF(1-275) variants are similar to those of PspF(1-275)(T148A) suggesting a functional signaling link between Thr(148) and loop 2. In PspF(1-275) this link relies on the conserved nucleotide state-dependent interaction between the Walker B residue Glu(108) and Thr(148). We propose that hydrolysis is relayed via Thr(148) to loop 2 creating motions that provide mechanical force to the GAFTGA loop 1 that contacts sigma(54).


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , RNA Polimerase Sigma 54/metabolismo , Treonina/fisiologia , Transativadores/fisiologia , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hidrólise , RNA Polimerase Sigma 54/química , Treonina/genética , Transativadores/genética
12.
J Struct Biol ; 156(1): 190-9, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16531068

RESUMO

Initiation of transcription is a major point of transcriptional regulation and invariably involves the transition from a closed to an open RNA polymerase (RNAP) promoter complex. In the case of the sigma(54)-RNAP, this multi step process requires energy, provided by ATP hydrolysis occurring within the AAA+ domain of enhancer binding proteins (EBPs). Typically, EBPs have an N-terminal regulatory domain, a central AAA+ domain that directly contacts sigma(54) and a C-terminal DNA binding domain. The following AAA+ EBP crystal structures have recently become available: heptameric AAA+ domains of NtrC1 and dimeric NtrC1 with its regulatory domain, hexameric AAA+ domains of ZraR with DNA binding domains, apo and nucleotide bound forms of the AAA+ domain of PspF as well as a cryo-EM structure of the AAA+ domain of PspF complexed with sigma(54). These AAA+ domains reveal the structural conservation between EBPs and other AAA+ domains. EBP specific structural features involved in substrate remodelling are located proximal to the pore of the hexameric ring. Parallels with the substrate binding elements near the central pore of other AAA+ members are drawn. We propose a structural model of EBPs in complex with a sigma(54)-RNAP-promoter complex.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Ativação Transcricional , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Sequência Consenso , Sequência Conservada , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Hidrólise , Modelos Químicos , Dados de Sequência Molecular , Nucleotídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , RNA Polimerase Sigma 54/metabolismo , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Especificidade por Substrato
13.
J Mol Biol ; 357(2): 481-92, 2006 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-16430918

RESUMO

Bacterial enhancer-binding proteins (EBP) activate transcription by hydrolyzing ATP to restructure the sigma(54)-RNA polymerase-promoter complex. We compare six high resolution structures (<2.1 A) of the AAA(+) domain of EBP phage shock protein F (PspF) including apo, AMPPNP, Mg(2+)-ATP, and ADP forms. These structures permit a description of the atomic details underpinning the origins of the conformational changes occurring during ATP hydrolysis. Conserved regions of PspF's AAA(+) domain respond distinctively to nucleotide binding and hydrolysis, suggesting functional roles during the hydrolysis cycle, which completely agree with those derived from activities of PspF mutated at these positions. We propose a putative atomic switch that is responsible for coupling structural changes in the nucleotide-binding site to the repositioning of the sigma(54)-interacting loops. Striking similarities in nucleotide-specific conformational changes and atomic switch exist between PspF and the large T antigen helicase, suggesting conservation in the origin of those events amongst AAA(+) proteins.


Assuntos
Proteínas de Escherichia coli/química , Nucleotídeos/metabolismo , Conformação Proteica , Transativadores/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Magnésio/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , RNA Polimerase Sigma 54/química , RNA Polimerase Sigma 54/metabolismo , Transdução de Sinais , Transativadores/genética
14.
Science ; 307(5717): 1972-5, 2005 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15790859

RESUMO

Activators of bacterial sigma54-RNA polymerase holoenzyme are mechanochemical proteins that use adenosine triphosphate (ATP) hydrolysis to activate transcription. We have determined by cryogenic electron microscopy (cryo-EM) a 20 angstrom resolution structure of an activator, phage shock protein F [PspF(1-275)], which is bound to an ATP transition state analog in complex with its basal factor, sigma54. By fitting the crystal structure of PspF(1-275) at 1.75 angstroms into the EM map, we identified two loops involved in binding sigma54. Comparing enhancer-binding structures in different nucleotide states and mutational analysis led us to propose nucleotide-dependent conformational changes that free the loops for association with sigma54.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Conformação Proteica , Transativadores/química , Transativadores/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Proteínas PII Reguladoras de Nitrogênio , Dobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Polimerase Sigma 54 , Fator sigma/química , Fator sigma/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
15.
Curr Protein Pept Sci ; 5(2): 89-105, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15078220

RESUMO

ATPases are important molecular machines that convert the chemical energies stored in ATP to mechanical actions within the cell. ATPases are among the most abundant proteins with diverse functions involved in almost every cellular pathway. The well characterised ATPases include the various motor proteins responsible for cargo transfers, cell motilities, and muscle contractions; the protein degradation machinery - the proteasome; the ATP synthase, F-ATPase; and the chaperone systems. Other ATPases include DNA helicases and DNA replication complex; proteins responsible for protein/complex disassembly; and certain gene regulators. It is beyond the scope of this review to cover the complete range of ATPases. Instead, we will focus on a few representative ATPases, chosen based on their diverse mechanisms and properties. Furthermore, this review is by no means trying to cover comprehensively the literature for each ATPase nor the historical aspects in each field. We will focus on describing the various techniques being employed to derive the mechanisms and properties of the chosen ATPases. Among them, high and low resolution structural studies combined with biochemical assays seem to be the dominant technical advances adapted to reveal mechanisms for most of the ATPases except the bacterial sigma54 activators, whose mechanism of action is mostly derived from large amount of biochemical studies. A number of them, especially the F-ATPase and motor proteins, have been studied successfully by various single molecule and imaging techniques. We will therefore discuss them in greater details in order to describe the wide range techniques being utilised.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chaperonina 10/química , Chaperonina 10/metabolismo , Chaperonina 60/química , Chaperonina 60/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/fisiologia , Proteínas de Escherichia coli , Humanos , Cinesinas/química , Cinesinas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Biológicos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformação Proteica , Dobramento de Proteína , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , RNA Polimerase Sigma 54 , Fator sigma/química , Fator sigma/metabolismo , Fator sigma/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA