Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cell Death Dis ; 15(5): 379, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816421

RESUMO

CSMD1 (Cub and Sushi Multiple Domains 1) is a well-recognized regulator of the complement cascade, an important component of the innate immune response. CSMD1 is highly expressed in the central nervous system (CNS) where emergent functions of the complement pathway modulate neural development and synaptic activity. While a genetic risk factor for neuropsychiatric disorders, the role of CSMD1 in neurodevelopmental disorders is unclear. Through international variant sharing, we identified inherited biallelic CSMD1 variants in eight individuals from six families of diverse ancestry who present with global developmental delay, intellectual disability, microcephaly, and polymicrogyria. We modeled CSMD1 loss-of-function (LOF) pathogenesis in early-stage forebrain organoids differentiated from CSMD1 knockout human embryonic stem cells (hESCs). We show that CSMD1 is necessary for neuroepithelial cytoarchitecture and synchronous differentiation. In summary, we identified a critical role for CSMD1 in brain development and biallelic CSMD1 variants as the molecular basis of a previously undefined neurodevelopmental disorder.


Assuntos
Deficiência Intelectual , Proteínas de Membrana , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Feminino , Masculino , Transtornos do Neurodesenvolvimento/genética , Alelos , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/patologia , Criança , Pré-Escolar , Diferenciação Celular/genética , Proteínas Supressoras de Tumor
2.
Front Genet ; 12: 688808, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122528

RESUMO

SHOX deficiency causes a spectrum of clinical phenotypes related to skeletal dysplasia and short stature, including Léri-Weill dyschondrosteosis, Langer mesomelic dysplasia, Turner syndrome, and idiopathic short stature. SHOX controls chondrocyte proliferation and differentiation, bone maturation, and cellular growth arrest and apoptosis via transcriptional regulation of its direct target genes NPPB, FGFR3, and CTGF. However, our understanding of SHOX-related pathways is still incomplete. To elucidate the underlying molecular mechanisms and to better understand the broad phenotypic spectrum of SHOX deficiency, we aimed to identify novel SHOX targets. We analyzed differentially expressed genes in SHOX-overexpressing human fibroblasts (NHDF), and confirmed the known SHOX target genes NPPB and FGFR among the most strongly regulated genes, together with 143 novel candidates. Altogether, 23 genes were selected for further validation, first by whole-body characterization in developing shox-deficient zebrafish embryos, followed by tissue-specific expression analysis in three shox-expressing zebrafish tissues: head (including brain, pharyngeal arches, eye, and olfactory epithelium), heart, and pectoral fins. Most genes were physiologically relevant in the pectoral fins, while only few genes were also significantly regulated in head and heart tissue. Interestingly, multiple sox family members (sox5, sox6, sox8, and sox18) were significantly dysregulated in shox-deficient pectoral fins together with other genes (nppa, nppc, cdkn1a, cdkn1ca, cyp26b1, and cy26c1), highlighting an important role for these genes in shox-related growth disorders. Network-based analysis integrating data from the Ingenuity pathways revealed that most of these genes act in a common network. Our results provide novel insights into the genetic pathways and molecular events leading to the clinical manifestation of SHOX deficiency.

3.
Mol Neurodegener ; 16(1): 34, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078425

RESUMO

BACKGROUND: There is increasing evidence that Parkinson's disease (PD) might start in the gut, thus involving and compromising also the enteric nervous system (ENS). At the clinical onset of the disease the majority of dopaminergic neurons in the midbrain is already destroyed, so that the lack of early biomarkers for the disease represents a major challenge for developing timely treatment interventions. Here, we use a transgenic A30P-α-synuclein-overexpressing PD mouse model to identify appropriate candidate markers in the gut before hallmark symptoms begin to manifest. METHODS: Based on a gait analysis and striatal dopamine levels, we defined 2-month-old A30P mice as pre-symptomatic (psA30P), since they are not showing any motoric impairments of the skeletal neuromuscular system and no reduced dopamine levels, but an intestinal α-synuclein pathology. Mice at this particular age were further used to analyze functional and molecular alterations in both, the gastrointestinal tract and the ENS, to identify early pathological changes. We examined the gastrointestinal motility, the molecular composition of the ENS, as well as the expression of regulating miRNAs. Moreover, we applied A30P-α-synuclein challenges in vitro to simulate PD in the ENS. RESULTS: A retarded gut motility and early molecular dysregulations were found in the myenteric plexus of psA30P mice. We found that i.e. neurofilament light chain, vesicle-associated membrane protein 2 and calbindin 2, together with the miRNAs that regulate them, are significantly altered in the psA30P, thus representing potential biomarkers for early PD. Many of the dysregulated miRNAs found in the psA30P mice are reported to be changed in PD patients as well, either in blood, cerebrospinal fluid or brain tissue. Interestingly, the in vitro approaches delivered similar changes in the ENS cultures as seen in the transgenic animals, thus confirming the data from the mouse model. CONCLUSIONS: These findings provide an interesting and novel approach for the identification of appropriate biomarkers in men.


Assuntos
Sistema Nervoso Entérico/fisiopatologia , Gastroenteropatias/etiologia , Transtornos Parkinsonianos/fisiopatologia , Sintomas Prodrômicos , Animais , Gastroenteropatias/fisiopatologia , Motilidade Gastrointestinal/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
4.
Sci Rep ; 11(1): 2128, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483523

RESUMO

SHANK2 mutations have been identified in individuals with neurodevelopmental disorders, including intellectual disability and autism spectrum disorders (ASD). Using CRISPR/Cas9 genome editing, we obtained SH-SY5Y cell lines with frameshift mutations on one or both SHANK2 alleles. We investigated the effects of the different SHANK2 mutations on cell morphology, cell proliferation and differentiation potential during early neuronal differentiation. All mutant cell lines showed impaired neuronal differentiation marker expression. Cells with bi-allelic SHANK2 mutations revealed diminished apoptosis and increased proliferation, as well as decreased neurite outgrowth during early neuronal differentiation. Bi-allelic SHANK2 mutations resulted in an increase in p-AKT levels, suggesting that SHANK2 mutations impair downstream signaling of tyrosine kinase receptors. Additionally, cells with bi-allelic SHANK2 mutations had lower amyloid precursor protein (APP) expression compared to controls, suggesting a molecular link between SHANK2 and APP. Together, we can show that frameshift mutations on one or both SHANK2 alleles lead to an alteration of neuronal differentiation in SH-SY5Y cells, characterized by changes in cell growth and pre- and postsynaptic protein expression. We also provide first evidence that downstream signaling of tyrosine kinase receptors and amyloid precursor protein expression are affected.


Assuntos
Apoptose/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Mutação , Proteínas do Tecido Nervoso/genética , Crescimento Neuronal/genética , Neurônios/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Microscopia de Fluorescência , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurônios/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
J Parkinsons Dis ; 11(1): 171-176, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33337386

RESUMO

Still little is known about the nature of the gastrointestinal pathological alterations occurring in Parkinson's disease (PD). Here, we used multiplexed mRNA profiling to measure the expression of a panel of 770 genes related to neuropathological processes in deep submucosal rectal biopsies of PD patients and healthy controls. Altered enteric neuropathological traits based on the expression of 22 genes related to neuroglial and mitochondrial functions, vesicle trafficking and inflammation was observed in 9 out of 12 PD patients in comparison to healthy controls. These results provide new evidences that intestinal neuropathological alterations may occur in a large proportion of PD patients.


Assuntos
Sistema Nervoso Entérico , Perfilação da Expressão Gênica , Inflamação , Mucosa Intestinal , Doença de Parkinson , RNA Mensageiro/metabolismo , Reto , Idoso , Biópsia , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/patologia , Feminino , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Reto/metabolismo , Reto/patologia
6.
PLoS Genet ; 16(11): e1009106, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33151932

RESUMO

Hirschsprung disease (HSCR, OMIM 142623) involves congenital intestinal obstruction caused by dysfunction of neural crest cells and their progeny during enteric nervous system (ENS) development. HSCR is a multifactorial disorder; pathogenetic variants accounting for disease phenotype are identified only in a minority of cases, and the identification of novel disease-relevant genes remains challenging. In order to identify and to validate a potential disease-causing relevance of novel HSCR candidate genes, we established a complementary study approach, combining whole exome sequencing (WES) with transcriptome analysis of murine embryonic ENS-related tissues, literature and database searches, in silico network analyses, and functional readouts using candidate gene-specific genome-edited cell clones. WES datasets of two patients with HSCR and their non-affected parents were analysed, and four novel HSCR candidate genes could be identified: ATP7A, SREBF1, ABCD1 and PIAS2. Further rare variants in these genes were identified in additional HSCR patients, suggesting disease relevance. Transcriptomics revealed that these genes are expressed in embryonic and fetal gastrointestinal tissues. Knockout of these genes in neuronal cells demonstrated impaired cell differentiation, proliferation and/or survival. Our approach identified and validated candidate HSCR genes and provided further insight into the underlying pathomechanisms of HSCR.


Assuntos
Doença de Hirschsprung/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , Sobrevivência Celular/genética , Simulação por Computador , ATPases Transportadoras de Cobre/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Lactente , Masculino , Camundongos , Proteínas Inibidoras de STAT Ativados/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Sequenciamento do Exoma
7.
Stem Cell Res ; 49: 102004, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33002717

RESUMO

Two human induced pluripotent stem cell lines (hiPSC) were generated by reprogramming fibroblasts isolated from a skin biopsy taken from a female patient diagnosed with autism spectrum disorder (ASD) and intellectual disability (ID). This patient harbors a de novo 120 kb deletion in SHANK2. As controls, four lines were generated in a similar manner from fibroblasts isolated from each of her parents, two clones per parent. All reported hiPSC lines have a normal karyotype, express pluripotency markers and have the ability to differentiate into all three germ layers.


Assuntos
Transtorno do Espectro Autista , Células-Tronco Pluripotentes Induzidas , Deficiência Intelectual , Transtorno do Espectro Autista/genética , Células Cultivadas , Feminino , Fibroblastos , Humanos , Proteínas do Tecido Nervoso
8.
Neurogastroenterol Motil ; 32(9): e13868, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32391639

RESUMO

BACKGROUND: A Giardia outbreak in Bergen, Norway, caused postinfectious functional gastrointestinal disorders (PI-FGIDs). Despite the devastating effects of this outbreak, it presented a unique chance to investigate the implication on the dysregulation of genetic pathways in PI-FGID. METHODS: We performed the first comparative expression profiling of miRNAs and their potential target genes in microdissected rectal biopsies from 20 Giardia-induced PI-FGID patients vs 18 healthy controls by nCounter analysis. Subsequently, candidates were validated on protein level by immunostaining. KEY RESULTS: miRNA profiling on rectal biopsy samples from 5 diarrhea-predominant PI-IBS cases compared to 10 healthy controls revealed differential expression in the epithelial layer. The top five regulated miRNAs were implicated in GI disease, inflammatory response, and immunological disease. Subsequently, these miRNAs and 100 potential mRNA targets were examined in 20 PI-FGID cases and 18 healthy controls in both the mucosal epithelium and the lamina propria. Although deregulation of the selected miRNAs could not be verified in the larger sample set, mRNAs involved in barrier function were downregulated in the epithelium. Pro-inflammatory genes and genes implicated in epigenetic modifications were upregulated in the lamina propria. Immunostaining for selected candidates on 17 PI-FGID cases and 16 healthy controls revealed increased tryptase levels as well as a decreased and aberrant subcellular expression of occludin. CONCLUSIONS AND INFERENCES: Genes relevant to immune and barrier function as well as stress response and epigenetic modulation are differentially expressed in PI-FGIDs and may contribute to disease manifestation.


Assuntos
Gastroenteropatias/genética , Giardíase/complicações , Mucosa Intestinal/metabolismo , MicroRNAs/genética , Adulto , Feminino , Gastroenteropatias/metabolismo , Gastroenteropatias/microbiologia , Perfilação da Expressão Gênica , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Adulto Jovem
9.
Neurogastroenterol Motil ; 31(10): e13674, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31318473

RESUMO

BACKGROUND: The enteric nervous system (ENS), a complex network of neurons and glial cells, coordinates major gastrointestinal functions. Impaired development or secondary aberrations cause severe enteric neuropathies. Neural crest-derived stem cells as well as enteric neuronal progenitor cells, which form enteric neurospheres, represent a promising tool to unravel molecular pathomechanisms and to develop novel therapy options. However, so far little is known about the detailed cellular composition and the proportional distribution of enteric neurospheres. Comprehensive knowledge will not only be essential for basic research but also for prospective cell replacement therapies to restore or to improve enteric neuronal dysfunction. METHODS: Human enteric neurospheres were generated from three individuals with varying age. For detailed molecular characterization, nCounter target gene expression analyses focusing on stem, progenitor, neuronal, glial, muscular, and epithelial cell markers were performed. Corresponding archived paraffin-embedded individuals' specimens were analyzed accordingly. KEY RESULTS: Our data revealed a remarkable molecular complexity of enteric neurospheres and archived specimens. Amongst the expression of multipotent stem cell, progenitor cell, neuronal, glial, muscle and epithelial cell markers, moderate levels for the pluripotency marker POU5F1 were observed. Furthermore, besides the interindividual variability, we identified highly distinct intraindividual expression profiles. CONCLUSIONS & INFERENCES: Our results emphasize the assessment of molecular signatures to be essential for standardized use, optimization of experimental approaches, and elimination of potential risk factors, as the formation of tumors. Our study pipeline may serve as a blueprint implemented into the characterization procedure of enteric neurospheres for various future applications.


Assuntos
Sistema Nervoso Entérico/metabolismo , Células Epiteliais/metabolismo , Plexo Mientérico/metabolismo , Miócitos de Músculo Liso/metabolismo , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Adolescente , Técnicas de Cultura de Células , Criança , Perfilação da Expressão Gênica , Humanos , Íleo/citologia , Íleo/metabolismo , Lactente , Microdissecção e Captura a Laser , Plexo Mientérico/citologia , Crista Neural/metabolismo , Transcriptoma
10.
Front Mol Neurosci ; 11: 337, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319350

RESUMO

Autism spectrum disorders (ASD) have a higher prevalence in male individuals compared to females, with a ratio of affected boys compared to girls of 4:1 for ASD and 11:1 for Asperger syndrome. Mutations in the SHANK genes (comprising SHANK1, SHANK2 and SHANK3) coding for postsynaptic scaffolding proteins have been tightly associated with ASD. As early brain development is strongly influenced by sex hormones, we investigated the effect of dihydrotestosterone (DHT) and 17ß-estradiol on SHANK expression in a human neuroblastoma cell model. Both sex hormones had a significant impact on the expression of all three SHANK genes, which could be effectively blocked by androgen and estrogen receptor antagonists. In neuron-specific androgen receptor knock-out mice (Ar NesCre), we found a nominal significant reduction of all Shank genes at postnatal day 7.5 in the cortex. In the developing cortex of wild-type (WT) CD1 mice, a sex-differential protein expression was identified for all Shanks at embryonic day 17.5 and postnatal day 7.5 with significantly higher protein levels in male compared to female mice. Together, we could show that SHANK expression is influenced by sex hormones leading to a sex-differential expression, thus providing novel insights into the sex bias in ASD.

11.
Eur J Hum Genet ; 26(8): 1113-1120, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29706635

RESUMO

Height is a complex quantitative trait with a high heritability. Short stature is diagnosed when height is significantly below the average of the general population for that person's age and sex. We have recently found that the retinoic acid degrading enzyme CYP26C1 modifies SHOX deficiency phenotypes toward more severe clinical manifestations. Here, we asked whether damaging variants in CYP26C1 alone could lead to short stature. We performed exome and Sanger sequencing to analyze 856 individuals with short stature where SHOX deficiency was previously excluded. Three different damaging missense variants and one splicing variant were identified in six independent individuals; the functional significance of the identified variants was tested in vitro or in vivo using zebrafish as a model. The genetic and functional data reported here indicate that CYP26C1 represents a novel gene underlying growth disorders and that damaging variants in the absence of SHOX variants can lead to short stature.


Assuntos
Família 26 do Citocromo P450/genética , Nanismo Hipofisário/genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Animais , Linhagem Celular Tumoral , Criança , Família 26 do Citocromo P450/metabolismo , Nanismo Hipofisário/patologia , Exoma , Feminino , Humanos , Masculino , Splicing de RNA , Peixe-Zebra
12.
J Neurodev Disord ; 10(1): 15, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29665782

RESUMO

BACKGROUND: Mutations in the SHANK genes, which encode postsynaptic scaffolding proteins, have been linked to a spectrum of neurodevelopmental disorders. The SHANK genes and the schizophrenia-associated microRNA-137 show convergence on several levels, as they are both expressed at the synapse, influence neuronal development, and have a strong link to neurodevelopmental and neuropsychiatric disorders like intellectual disability, autism, and schizophrenia. This compiled evidence raised the question if the SHANKs might be targets of miR-137. METHODS: In silico analysis revealed a putative binding site for microRNA-137 (miR-137) in the SHANK2 3'UTR, while this was not the case for SHANK1 and SHANK3. Luciferase reporter assays were performed by overexpressing wild type and mutated SHANK2-3'UTR and miR-137 in human neuroblastoma cells and mouse primary hippocampal neurons. miR-137 was also overexpressed or inhibited in hippocampal neurons, and Shank2 expression was analyzed by quantitative real-time PCR and Western blot. Additionally, expression levels of experimentally validated miR-137 target genes were analyzed in the dorsolateral prefrontal cortex (DLPFC) of schizophrenia and control individuals using the RNA-Seq data from the CommonMind Consortium. RESULTS: miR-137 directly targets the 3'UTR of SHANK2 in a site-specific manner. Overexpression of miR-137 in mouse primary hippocampal neurons significantly lowered endogenous Shank2 protein levels without detectable influence on mRNA levels. Conversely, miR-137 inhibition increased Shank2 protein expression, indicating that miR-137 regulates SHANK2 expression by repressing protein translation rather than inducing mRNA degradation. To find out if the miR-137 signaling network is altered in schizophrenia, we compared miR-137 precursor and miR-137 target gene expression in the DLPFC of schizophrenia and control individuals using the CommonMind Consortium RNA sequencing data. Differential expression of 23% (16/69) of known miR-137 target genes was detected in the DLPFC of schizophrenia individuals compared with controls. We propose that in further targets (e.g., SHANK2, as described in this paper) which are not regulated on RNA level, effects may only be detectable on protein level. CONCLUSION: Our study provides evidence that a direct regulatory link exists between miR-137 and SHANK2 and supports the finding that miR-137 signaling might be altered in schizophrenia.


Assuntos
Hipocampo/metabolismo , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/metabolismo , Regiões 3' não Traduzidas , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Humanos , Camundongos , MicroRNAs/química , Proteínas do Tecido Nervoso/química , Cultura Primária de Células , Esquizofrenia/genética
13.
Genet Med ; 20(7): 728-736, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29261175

RESUMO

PURPOSE: Combined pituitary hormone deficiency (CPHD) is characterized by a malformed or underdeveloped pituitary gland resulting in an impaired pituitary hormone secretion. Several transcription factors have been described in its etiology, but defects in known genes account for only a small proportion of cases. METHODS: To identify novel genetic causes for congenital hypopituitarism, we performed exome-sequencing studies on 10 patients with CPHD and their unaffected parents. Two candidate genes were sequenced in further 200 patients. Genotype data of known hypopituitary genes are reviewed. RESULTS: We discovered 51 likely damaging variants in 38 genes; 12 of the 51 variants represent de novo events (24%); 11 of the 38 genes (29%) were present in the E12.5/E14.5 pituitary transcriptome. Targeted sequencing of two candidate genes, SLC20A1 and SLC15A4, of the solute carrier membrane transport protein family in 200 additional patients demonstrated two further variants predicted as damaging. We also found combinations of de novo (SLC20A1/SLC15A4) and transmitted variants (GLI2/LHX3) in the same individuals, leading to the full-blown CPHD phenotype. CONCLUSION: These data expand the pituitary target genes repertoire for diagnostics and further functional studies. Exome sequencing has identified a combination of rare variants in different genes that might explain incomplete penetrance in CPHD.


Assuntos
Proteínas de Transporte/genética , Hipopituitarismo/genética , Proteínas do Tecido Nervoso/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Adolescente , Adulto , Proteínas de Transporte/metabolismo , Criança , Família , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Proteínas de Membrana Transportadoras , Proteínas do Tecido Nervoso/metabolismo , Fatores de Risco , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Fatores de Transcrição/genética , Sequenciamento do Exoma/métodos
14.
Eur J Hum Genet ; 25(12): 1324-1334, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29255182

RESUMO

ARL13B encodes for the ADP-ribosylation factor-like 13B GTPase, which is required for normal cilia structure and Sonic hedgehog (Shh) signaling. Disruptions in cilia structure or function lead to a class of human disorders called ciliopathies. Joubert syndrome is characterized by a wide spectrum of symptoms, including a variable degree of intellectual disability, ataxia, and ocular abnormalities. Here we report a novel homozygous missense variant c.[223G>A] (p.(Gly75Arg) in the ARL13B gene, which was identified by whole-exome sequencing of a trio from a consanguineous family with multiple-affected individuals suffering from intellectual disability, ataxia, ocular defects, and epilepsy. The same variant was also identified in a second family. We saw a striking difference in the severity of ataxia between affected male and female individuals in both families. Both ARL13B and ARL13B-c.[223G>A] (p.(Gly75Arg) expression rescued the cilia length and Shh defects displayed by Arl13b hennin (null) cells, indicating that the variant did not disrupt either ARL13B function. In contrast, ARL13B-c.[223G>A] (p.(Gly75Arg) displayed a marked loss of ARL3 guanine nucleotide-exchange factor activity, with retention of its GTPase activities, highlighting the correlation between its loss of function as an ARL3 guanine nucleotide-exchange factor and Joubert syndrome.


Assuntos
Fatores de Ribosilação do ADP/genética , Anormalidades Múltiplas/genética , Cerebelo/anormalidades , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Mutação com Perda de Função , Retina/anormalidades , Fatores de Ribosilação do ADP/metabolismo , Anormalidades Múltiplas/diagnóstico , Adolescente , Adulto , Animais , Linhagem Celular Tumoral , Células Cultivadas , Criança , Anormalidades do Olho/diagnóstico , Feminino , Guanosina Trifosfato/metabolismo , Homozigoto , Humanos , Doenças Renais Císticas/diagnóstico , Masculino , Camundongos , Mutação de Sentido Incorreto , Linhagem
15.
Hum Mutat ; 38(2): 137-147, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27763704

RESUMO

Serotonin type 3 (5-HT3 ) receptors are ligand-gated ion channels formed by five subunits (5-HT3A-E), which are encoded by the HTR3A, HTR3B, HTR3C, HTR3D, and HTR3E genes. Functional receptors are pentameric complexes of diverse composition. Different receptor subtypes confer a predisposition to nausea and vomiting during chemotherapy, pregnancy, and following surgery. In addition, different subtypes contribute to neurogastroenterologic disorders such irritable bowel syndrome (IBS) and eating disorders as well as comorbid psychiatric conditions. 5-HT3 receptor antagonists are established treatments for emesis and IBS and are beneficial in the treatment of psychiatric diseases. Several case-control and pharmacogenetic studies have demonstrated an association between HTR3 variants and psychiatric and neurogastroenterologic phenotypes. Recently, their potential as predictors of nausea and vomiting and treatment of psychiatric disorders became evident. This information is now available in the serotonin receptor 3 HTR3 gene allelic variant database (www.htr3.uni-hd.de), which contains five sub-databases, one for each of the five different serotonin receptor genes HTR3A-E. Information on HTR3 variants, their functional relevance, associated phenotypes, and pharmacogenetic data such as drug response and side effects are available. This central information pool should help clinicians as well as scientists to evaluate their findings and to use the relevant information for subsequent genotype-phenotype correlation studies and pharmacogenetic approaches.


Assuntos
Alelos , Bases de Dados de Ácidos Nucleicos , Variação Genética , Receptores 5-HT3 de Serotonina/genética , Biologia Computacional/métodos , Gastroenteropatias/tratamento farmacológico , Gastroenteropatias/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/genética , Farmacogenética/métodos , Ferramenta de Busca , Agonistas do Receptor 5-HT3 de Serotonina/farmacologia , Agonistas do Receptor 5-HT3 de Serotonina/uso terapêutico , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT3 de Serotonina/uso terapêutico , Resultado do Tratamento , Interface Usuário-Computador
16.
EMBO Mol Med ; 8(12): 1455-1469, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27861128

RESUMO

Mutations in the homeobox gene SHOX cause SHOX deficiency, a condition with clinical manifestations ranging from short stature without dysmorphic signs to severe mesomelic skeletal dysplasia. In rare cases, individuals with SHOX deficiency are asymptomatic. To elucidate the factors that modify disease severity/penetrance, we studied a three-generation family with SHOX deficiency. The variant p.Phe508Cys of the retinoic acid catabolizing enzyme CYP26C1 co-segregated with the SHOX variant p.Val161Ala in the affected individuals, while the SHOX mutant alone was present in asymptomatic individuals. Two further cases with SHOX deficiency and damaging CYP26C1 variants were identified in a cohort of 68 individuals with LWD The identified CYP26C1 variants affected its catabolic activity, leading to an increased level of retinoic acid. High levels of retinoic acid significantly decrease SHOX expression in human primary chondrocytes and zebrafish embryos. Individual morpholino knockdown of either gene shortens the pectoral fins, whereas depletion of both genes leads to a more severe phenotype. Together, our findings describe CYP26C1 as the first genetic modifier for SHOX deficiency.


Assuntos
Família 26 do Citocromo P450/genética , Predisposição Genética para Doença , Transtornos do Crescimento/genética , Transtornos do Crescimento/patologia , Proteínas de Homeodomínio/genética , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Adolescente , Adulto , Idoso , Animais , Criança , Família 26 do Citocromo P450/metabolismo , Feminino , Perfilação da Expressão Gênica , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Análise de Sequência de DNA , Índice de Gravidade de Doença , Proteína de Homoeobox de Baixa Estatura , Tretinoína/metabolismo , Adulto Jovem , Peixe-Zebra/anatomia & histologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
17.
Endocr Rev ; 37(4): 417-48, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27355317

RESUMO

SHOX deficiency is the most frequent genetic growth disorder associated with isolated and syndromic forms of short stature. Caused by mutations in the homeobox gene SHOX, its varied clinical manifestations include isolated short stature, Léri-Weill dyschondrosteosis, and Langer mesomelic dysplasia. In addition, SHOX deficiency contributes to the skeletal features in Turner syndrome. Causative SHOX mutations have allowed downstream pathology to be linked to defined molecular lesions. Expression levels of SHOX are tightly regulated, and almost half of the pathogenic mutations have affected enhancers. Clinical severity of SHOX deficiency varies between genders and ranges from normal stature to profound mesomelic skeletal dysplasia. Treatment options for children with SHOX deficiency are available. Two decades of research support the concept of SHOX as a transcription factor that integrates diverse aspects of bone development, growth plate biology, and apoptosis. Due to its absence in mouse, the animal models of choice have become chicken and zebrafish. These models, therefore, together with micromass cultures and primary cell lines, have been used to address SHOX function. Pathway and network analyses have identified interactors, target genes, and regulators. Here, we summarize recent data and give insight into the critical molecular and cellular functions of SHOX in the etiopathogenesis of short stature and limb development.


Assuntos
Transtornos do Crescimento/genética , Transtornos dos Cromossomos Sexuais/genética , Proteína de Homoeobox de Baixa Estatura/deficiência , Animais , Transtornos do Crescimento/terapia , Humanos , Transtornos dos Cromossomos Sexuais/terapia
18.
Horm Res Paediatr ; 84(1): 14-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25967354

RESUMO

BACKGROUND/AIMS: The short stature homeobox-containing (SHOX) gene is one of many genes that regulate longitudinal growth. The SHOX deficiency (SHOX-D) phenotype, caused by intragenic or regulatory region defects, ranges from normal stature to mesomelic skeletal dysplasia. We investigated differences in radiological anomalies between patients with SHOX-D and Turner syndrome (TS) and the effect of 2 years of growth hormone (GH) treatment on these anomalies. METHODS: Left hand/wrist, forearm and lower leg radiographs were assessed at baseline and after 2 years in children with genetically confirmed SHOX-D (GH-treated and untreated groups) and TS (GH-treated) in a randomised, controlled, multinational study. RESULTS: Radiological anomalies of hand, wrist and forearm were common in SHOX-D and TS. Radial bowing appeared more prevalent in SHOX-D, while lower leg anomalies were more common in TS. There were no significant differences in radiological findings between GH-treated and untreated patients with SHOX-D after 2 years. CONCLUSION: GH treatment had no systematic effect on skeletal findings in SHOX-D, based on limited radiological differences between the GH-treated and untreated groups at 2 years. Bone age radiographs allow assessment of radiological signs indicating a potential diagnosis of SHOX-D and may lead to earlier genetic confirmation and initiation of GH therapy.


Assuntos
Proteínas de Homeodomínio/genética , Hormônio do Crescimento Humano/administração & dosagem , Rádio (Anatomia)/diagnóstico por imagem , Síndrome de Turner/diagnóstico por imagem , Síndrome de Turner/tratamento farmacológico , Síndrome de Turner/genética , Criança , Pré-Escolar , Humanos , Radiografia , Proteína de Homoeobox de Baixa Estatura
19.
PLoS One ; 9(6): e98543, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24887312

RESUMO

Deficiency of the human short stature homeobox-containing gene (SHOX) has been identified in several disorders characterized by reduced height and skeletal anomalies such as Turner syndrome, Léri-Weill dyschondrosteosis and Langer mesomelic dysplasia as well as isolated short stature. SHOX acts as a transcription factor during limb development and is expressed in chondrocytes of the growth plates. Although highly conserved in vertebrates, rodents lack a SHOX orthologue. This offers the unique opportunity to analyze the effects of human SHOX expression in transgenic mice. We have generated a mouse expressing the human SHOXa cDNA under the control of a murine Col2a1 promoter and enhancer (Tg(Col2a1-SHOX)). SHOX and marker gene expression as well as skeletal phenotypes were characterized in two transgenic lines. No significant skeletal anomalies were found in transgenic compared to wildtype mice. Quantitative and in situ hybridization analyses revealed that Tg(Col2a1-SHOX), however, affected extracellular matrix gene expression during early limb development, suggesting a role for SHOX in growth plate assembly and extracellular matrix composition during long bone development. For instance, we could show that the connective tissue growth factor gene Ctgf, a gene involved in chondrogenic and angiogenic differentiation, is transcriptionally regulated by SHOX in transgenic mice. This finding was confirmed in human NHDF and U2OS cells and chicken micromass culture, demonstrating the value of the SHOX-transgenic mouse for the characterization of SHOX-dependent genes and pathways in early limb development.


Assuntos
Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Animais , DNA Complementar , Ensaio de Desvio de Mobilidade Eletroforética , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Reação em Cadeia da Polimerase em Tempo Real
20.
Dev Dyn ; 243(5): 629-39, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24347445

RESUMO

BACKGROUND: The short stature homeodomain transcription factors SHOX and SHOX2 play key roles in limb formation. To gain more insight into genes regulated by Shox2 during limb development, we analyzed expression profiles of WT and Shox2-/- mouse embryonic limbs and identified the T-Box transcription factor Tbx4 as a potential downstream target. Tbx4 is known to exert essential functions in skeletal and muscular hindlimb development. In humans, haploinsufficiency of TBX4 causes small patella syndrome, a skeletal dysplasia characterized by anomalies of the knee, pelvis, and foot. RESULTS: Here, we demonstrate an inhibitory regulatory effect of Shox2 on Tbx4 specifically in the forelimbs. We also show that Tbx4 activates Shox2 expression in fore- and hindlimbs, suggesting Shox2 as a feedback modulator of Tbx4. Using EMSA studies, we find that Tbx4/TBX4 is able to bind to distinct T-box binding sites within the mouse and human Shox2/SHOX2 promoter. CONCLUSIONS: Our data identifies Tbx4 as a novel transcriptional activator of Shox2 during murine fore- and hindlimb development. Tbx4 is also regulated by Shox2 specifically in the forelimb bud possibly via a feedback mechanism. These data extend our understanding of the role and regulation of Tbx4 and Shox2 in limb development and limb associated diseases.


Assuntos
Embrião de Mamíferos/embriologia , Membro Posterior/embriologia , Proteínas de Homeodomínio/metabolismo , Organogênese/fisiologia , Proteínas com Domínio T/metabolismo , Animais , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Camundongos Knockout , Proteínas com Domínio T/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA