Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 23(2): 618-632, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38226771

RESUMO

Cell surface proteins represent an important class of molecules for therapeutic targeting and cellular phenotyping. However, their enrichment and detection via mass spectrometry-based proteomics remains challenging due to low abundance, post-translational modifications, hydrophobic regions, and processing requirements. To improve their identification, we optimized a Cell-Surface Capture (CSC) workflow that incorporates magnetic bead-based processing. Using this approach, we evaluated labeling conditions (biotin tags and catalysts), enrichment specificity (streptavidin beads), missed cleavages (lysis buffers), nonenzymatic deamidation (digestion and deglycosylation buffers), and data acquisition methods (DDA, DIA, and TMT). Our findings support the use of alkoxyamine-PEG4-biotin plus 5-methoxy-anthranilic acid, SDS/urea-based lysis buffers, single-pot solid-phased-enhanced sample-preparation (SP3), and streptavidin magnetic beads for maximal surfaceome coverage. Notably, with semiautomated processing, sample handling was simplified and between ∼600 and 900 cell surface N-glycoproteins were identified from only 25-200 µg of HeLa protein. CSC also revealed significant differences between in vitro monolayer cultures and in vivo tumor xenografts of murine CT26 colon adenocarcinoma samples that may aid in target identification for drug development. Overall, the improved efficiency of the magnetic-based CSC workflow identified both previously reported and novel N-glycosites with less material and high reproducibility that should help advance the field of surfaceomics by providing insight in cellular phenotypes not previously documented.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Animais , Camundongos , Proteômica/métodos , Biotina , Fluxo de Trabalho , Estreptavidina , Reprodutibilidade dos Testes , Glicoproteínas de Membrana , Fenômenos Magnéticos , Proteoma
2.
J Am Soc Mass Spectrom ; 33(9): 1590-1597, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34645265

RESUMO

The class I major histocompatibility (MHC-I) complex is a set of diverse cell surface receptors encoded by the human leukocyte antigen gene complex. These receptors present intracellular antigens to cytotoxic T cells providing information on the state and health of cells. Changes in the immunopeptidome during cancer may provide novel targets for therapeutic intervention. To understand how the tumor immunopeptidome is altered, we developed a mass spectrometry (MS) based platform for isolating and identifying MHC-I peptide antigens in lung tumors. In the course of our work, we encountered several large unknown peptide contaminants which had not been previously reported. To understand the source of these major contaminants, we isolated them using offline fractionation and identified them by liquid chromatography-tandem mass spectrometry (LC-MS/MS) as members of the host defense protein family known as the defensins. To mitigate their detrimental effects, we modified our "Original" data-dependent acquisition (DDA) MS method to narrowly target the MHC-I peptides based on their physical properties including charge state and molecular weight ("z state" DDA), evaluated field asymmetric ion mobility spectrometry to attempt gas-phase separation prior to MS analysis, and developed an immunodepletion approach using defensin specific antibodies. This modified approach improves peptide identification and reduces the impact of defensin contamination in lung tissue samples.


Assuntos
Neoplasias , Espectrometria de Massas em Tandem , Cromatografia Líquida , Defensinas , Humanos , Pulmão/química , Peptídeos/química
3.
Mol Cancer Ther ; 19(9): 1875-1888, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518207

RESUMO

Despite advances in the treatment of acute myeloid leukemia (AML), novel therapies are needed to induce deeper and more durable clinical response. Bispecific T-cell Engager (BiTE) molecules, which redirect patient T cells to lyse tumor cells, are a clinically validated modality for hematologic malignancies. Due to broad AML expression and limited normal tissue expression, fms-related tyrosine kinase 3 (FLT3) is proposed to be an optimal BiTE molecule target. Expression profiling of FLT3 was performed in primary AML patient samples and normal hematopoietic cells and nonhematopoietic tissues. Two novel FLT3 BiTE molecules, one with a half-life extending (HLE) Fc moiety and one without, were assessed for T-cell-dependent cellular cytotoxicity (TDCC) of FLT3-positive cell lines in vitro, in vivo, and ex vivo FLT3 protein was detected on the surface of most primary AML bulk and leukemic stem cells but only a fraction of normal hematopoietic stem and progenitor cells. FLT3 protein detected in nonhematopoietic cells was cytoplasmic. FLT3 BiTE molecules induced TDCC of FLT3-positive cells in vitro, reduced tumor growth and increased survival in AML mouse models in vivo Both molecules exhibited reproducible pharmacokinetic and pharmacodynamic profiles in cynomolgus monkeys in vivo, including elimination of FLT3-positive cells in blood and bone marrow. In ex vivo cultures of primary AML samples, patient T cells induced TDCC of FLT3-positive target cells. Combination with PD-1 blockade increased BiTE activity. These data support the clinical development of an FLT3 targeting BiTE molecule for the treatment of AML.


Assuntos
Anticorpos Biespecíficos/administração & dosagem , Inibidores de Checkpoint Imunológico/administração & dosagem , Leucemia Mieloide Aguda/tratamento farmacológico , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Anticorpos Biespecíficos/farmacologia , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Citotoxicidade Imunológica , Sinergismo Farmacológico , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Células K562 , Leucemia Mieloide Aguda/metabolismo , Macaca fascicularis , Camundongos , Resultado do Tratamento , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores
4.
Anal Chem ; 87(20): 10222-9, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26398777

RESUMO

Recent advances in commercial mass spectrometers with higher resolving power and faster scanning capabilities have expanded their functionality beyond traditional data-dependent acquisition (DDA) to targeted proteomics with higher precision and multiplexing. Using an orthogonal quadrupole time-of flight (QqTOF) LC-MS system, we investigated the feasibility of implementing large-scale targeted quantitative assays using scheduled, high resolution multiple reaction monitoring (sMRM-HR), also referred to as parallel reaction monitoring (sPRM). We assessed the selectivity and reproducibility of PRM, also referred to as parallel reaction monitoring, by measuring standard peptide concentration curves and system suitability assays. By evaluating up to 500 peptides in a single assay, the robustness and accuracy of PRM assays were compared to traditional SRM workflows on triple quadrupole instruments. The high resolution and high mass accuracy of the full scan MS/MS spectra resulted in sufficient selectivity to monitor 6-10 MS/MS fragment ions per target precursor, providing flexibility in postacquisition assay refinement and optimization. The general applicability of the sPRM workflow was assessed in complex biological samples by first targeting 532 peptide precursor ions in a yeast lysate, and then 466 peptide precursors from a previously generated candidate list of differentially expressed proteins in whole cell lysates from E. coli. Lastly, we found that sPRM assays could be rapidly and efficiently developed in Skyline from DDA libraries when acquired on the same QqTOF platform, greatly facilitating their successful implementation. These results establish a robust sPRM workflow on a QqTOF platform to rapidly transition from discovery analysis to highly multiplexed, targeted peptide quantitation.


Assuntos
Espectrometria de Massas/métodos , Peptídeos/análise , Software , Animais , Caenorhabditis elegans/citologia , Cromatografia Líquida de Alta Pressão , Escherichia coli/citologia , Saccharomyces cerevisiae/citologia , Fatores de Tempo
5.
Mol Cell Proteomics ; 14(9): 2405-19, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25987414

RESUMO

Quantitative analysis of discovery-based proteomic workflows now relies on high-throughput large-scale methods for identification and quantitation of proteins and post-translational modifications. Advancements in label-free quantitative techniques, using either data-dependent or data-independent mass spectrometric acquisitions, have coincided with improved instrumentation featuring greater precision, increased mass accuracy, and faster scan speeds. We recently reported on a new quantitative method called MS1 Filtering (Schilling et al. (2012) Mol. Cell. Proteomics 11, 202-214) for processing data-independent MS1 ion intensity chromatograms from peptide analytes using the Skyline software platform. In contrast, data-independent acquisitions from MS2 scans, or SWATH, can quantify all fragment ion intensities when reference spectra are available. As each SWATH acquisition cycle typically contains an MS1 scan, these two independent label-free quantitative approaches can be acquired in a single experiment. Here, we have expanded the capability of Skyline to extract both MS1 and MS2 ion intensity chromatograms from a single SWATH data-independent acquisition in an Integrated Dual Scan Analysis approach. The performance of both MS1 and MS2 data was examined in simple and complex samples using standard concentration curves. Cases of interferences in MS1 and MS2 ion intensity data were assessed, as were the differentiation and quantitation of phosphopeptide isomers in MS2 scan data. In addition, we demonstrated an approach for optimization of SWATH m/z window sizes to reduce interferences using MS1 scans as a guide. Finally, a correlation analysis was performed on both MS1 and MS2 ion intensity data obtained from SWATH acquisitions on a complex mixture using a linear model that automatically removes signals containing interferences. This work demonstrates the practical advantages of properly acquiring and processing MS1 precursor data in addition to MS2 fragment ion intensity data in a data-independent acquisition (SWATH), and provides an approach to simultaneously obtain independent measurements of relative peptide abundance from a single experiment.


Assuntos
Fígado/enzimologia , Peptídeos/isolamento & purificação , Inibidores de Proteínas Quinases/isolamento & purificação , Proteômica/métodos , Animais , Ensaios de Triagem em Larga Escala , Camundongos , Reprodutibilidade dos Testes , Software
6.
Mol Cell Proteomics ; 11(5): 202-14, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22454539

RESUMO

Despite advances in metabolic and postmetabolic labeling methods for quantitative proteomics, there remains a need for improved label-free approaches. This need is particularly pressing for workflows that incorporate affinity enrichment at the peptide level, where isobaric chemical labels such as isobaric tags for relative and absolute quantitation and tandem mass tags may prove problematic or where stable isotope labeling with amino acids in cell culture labeling cannot be readily applied. Skyline is a freely available, open source software tool for quantitative data processing and proteomic analysis. We expanded the capabilities of Skyline to process ion intensity chromatograms of peptide analytes from full scan mass spectral data (MS1) acquired during HPLC MS/MS proteomic experiments. Moreover, unlike existing programs, Skyline MS1 filtering can be used with mass spectrometers from four major vendors, which allows results to be compared directly across laboratories. The new quantitative and graphical tools now available in Skyline specifically support interrogation of multiple acquisitions for MS1 filtering, including visual inspection of peak picking and both automated and manual integration, key features often lacking in existing software. In addition, Skyline MS1 filtering displays retention time indicators from underlying MS/MS data contained within the spectral library to ensure proper peak selection. The modular structure of Skyline also provides well defined, customizable data reports and thus allows users to directly connect to existing statistical programs for post hoc data analysis. To demonstrate the utility of the MS1 filtering approach, we have carried out experiments on several MS platforms and have specifically examined the performance of this method to quantify two important post-translational modifications: acetylation and phosphorylation, in peptide-centric affinity workflows of increasing complexity using mouse and human models.


Assuntos
Mapeamento de Peptídeos/métodos , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Software , Acetilação , Sequência de Aminoácidos , Animais , Neoplasias da Mama , Calibragem/normas , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Meios de Cultivo Condicionados/química , Feminino , Análise de Fourier , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Musculares/metabolismo , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fosforilação , Proteoma/química , Proteoma/isolamento & purificação , Proteômica , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/isolamento & purificação , Complexo Piruvato Desidrogenase/metabolismo , Padrões de Referência , Espectrometria de Massas em Tandem/normas
7.
J Cell Biol ; 178(7): 1265-78, 2007 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-17893247

RESUMO

Bacterial toxins and effector proteins hijack eukaryotic enzymes that are spatially localized and display rapid signaling kinetics. However, the molecular mechanisms by which virulence factors engage highly dynamic substrates in the host cell environment are poorly understood. Here, we demonstrate that the enteropathogenic Escherichia coli (EPEC) type III effector protein EspF nucleates a multiprotein signaling complex composed of eukaryotic sorting nexin 9 (SNX9) and neuronal Wiskott-Aldrich syndrome protein (N-WASP). We demonstrate that a specific and high affinity association between EspF and SNX9 induces membrane remodeling in host cells. These membrane-remodeling events are directly coupled to N-WASP/Arp2/3-mediated actin nucleation. In addition to providing a biochemical mechanism of EspF function, we find that EspF dynamically localizes to membrane-trafficking organelles in a spatiotemporal pattern that correlates with SNX9 and N-WASP activity in living cells. Thus, our findings suggest that the EspF-dependent assembly of SNX9 and N-WASP represents a novel form of signaling mimicry used to promote EPEC pathogenesis and gastrointestinal disease.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Células Eucarióticas/metabolismo , Transdução de Sinais , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Polaridade Celular , Sobrevivência Celular , Cães , Células Epiteliais/citologia , Proteínas de Escherichia coli/química , Evolução Molecular , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ligantes , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA