Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 156: 20-39, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32871196

RESUMO

The research presented here shows QbD implementation for the optimisation of the key process parameters in electrohydrodynamic atomisation (EHDA). Here, the electrosprayed nanoparticles and electrospun fibers consisting of a polymeric matrix and dye. Eight formulations were assessed consisting of 5% w/v of polycaprolactone (PCL) in dichloromethane (DCM) and 5% w/v polyvinylpyrrolidone (PVP) in ethanol. A full factorial DOE was used to assess the various parameters (applied voltage, deposition distance, flow rate). Further particle and fiber analysis using Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Fourier Transform Infrared Spectroscopy (FTIR), particle/fiber size distribution. In addition to this in vitro release studied were carried out using fluorescein and Rhodamine B as model dyes and in vitro permeation studies were applied. The results show a significant difference in the morphology of resultant structures as well as a more rapid release profile for the PVP particles and fibers in comparison to the sustained release profiles found with PCL. In vitro drug release studies showed 100% drug release after 7 days for PCL particles and showed 100% drug release within 120 min for PVP particles. The release kinetics and the permeation study showed that the MN successfully pierced the membrane and the electrospun MN coating released a large amount of the loaded drug within 6 h. This study has demonstrated the capability of these robust MNs to encapsulate a diverse range drugs within a polymeric matrix giving rise to the potential of developed personalised medical devices.


Assuntos
Microinjeções/instrumentação , Agulhas , Polímeros/química , Pesquisa Qualitativa , Tecnologia Farmacêutica/instrumentação , Liberação Controlada de Fármacos , Microinjeções/normas , Agulhas/normas , Poliésteres/química , Poliésteres/normas , Polímeros/normas , Povidona/química , Povidona/normas , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Tecnologia Farmacêutica/normas
2.
Drug Discov Today ; 25(8): 1513-1520, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32561300

RESUMO

Recently, remarkable efforts have focused on research towards enhancing and delivering efficacious and advanced therapeutic agents. Even though this involves significant challenges, innovative techniques and materials have been explored to overcome these. The advantageous properties of mesoporous silica nanoparticles (MSNs), such as unique morphologies and geometries, makes then favorable for use for various drug delivery targeting purposes, particularly in cancer therapy. As we discuss here, MSNs have been utilized over the past few decades to improve the efficiency of anticancer drugs by enhancing their solubility to render them suitable for application, reducing adverse effects, and improving their anticancer cytotoxic efficiency.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Dióxido de Silício/administração & dosagem , Animais , Humanos , Porosidade
3.
Drug Deliv Transl Res ; 8(6): 1815-1827, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29873037

RESUMO

Electrohydrodynamic atomization (EHDA) is an emerging technique for the production of micron and nano-scaled particles. The process often involves Taylor cone enablement, which results in a fine spray yielding formulated droplets, which then undergo drying during deposition. In this work, novel multi-tip emitter (MTE) devices were designed, engineered and utilized for potential up-scaled EHDA, by comparison with a conventional single-needle system. To demonstrate this, the active ketoprofen (KETO) was formulated using polyvinylpyrrolidone (PVP) polymer as the matrix material. Here, PVP polymer (5% w/v) solution was prepared using ethanol and distilled water (80:20) as the vehicle. KETO was incorporated as 5% w/w of PVP. Physical properties of resulting solutions (viscosity, electrical conductivity, density and surface tension) were obtained. Formulations were electrosprayed through both single and novel MTEs under EHDA conditions at various flow rates (5-300 µl/min) and applied voltages (0-30 kV). The atomization process using MTEs and single nozzle was monitored at using various process parameters via a digital optical camera. Resulting particles were collected 200 mm below processing heads and were analyzed using differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Digital recordings confirmed stable MTE jetting at higher flow rates. Electron micrographs confirmed particle size variation arising due to nozzle head design and evidenced stable jetting derived greater near-uniform particles. DSC, XRD and TGA confirm KETO molecules were encapsulated and dispersed into PVP polymer particles. In conclusion, novel MTE devices enabled stable atomization even at higher flow rates when compared to conventional single-needle device. This indicates an exciting approach for scaling up (EHDA) in contrast to current efforts focusing on multiple-nozzle and pore-based processing outlets.


Assuntos
Composição de Medicamentos/métodos , Cetoprofeno/química , Povidona/química , Varredura Diferencial de Calorimetria , Microscopia Eletrônica de Varredura , Nanopartículas/química , Nebulizadores e Vaporizadores , Tamanho da Partícula , Propriedades de Superfície , Viscosidade
4.
Mol Pharm ; 14(6): 2010-2023, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28445052

RESUMO

Naturally occurring polymers are promising biocompatible materials that have many applications for emerging therapies, drug delivery systems, and diagnostic agents. The handling and processing of such materials still constitutes a major challenge, which can limit the full exploitation of their properties. This study explores an ambient environment processing technique: coaxial electrospray (CO-ES) to encapsulate genistein (an isoflavonoid and model drug), superparamagnetic iron oxide nanoparticles (SPIONs, 10-15 nm), and a fluorophore (BODIPY) into a layered (triglyceride tristearin shell) particulate system, with a view to constructing a theranostic agent. Mode mapping of CO-ES led to an optimized atomization engineering window for stable jetting, leading to encapsulation of SPIONs within particles of diameter 0.65-1.2 µm and drug encapsulation efficiencies of around 92%. Electron microscopy was used to image the encapsulated SPIONs and confirm core-shell triglyceride encapsulation in addition to further physicochemical characterization (AFM, FTIR, DSC, and TGA). Cell viability assays (MTT, HeLa cells) were used to determine optimal SPION loaded particles (∼1 mg/mL), while in vitro release profile experiments (PBS, pH = 7.4) demonstrate a triphasic release profile. Further cell studies confirmed cell uptake and internalization at selected time points (t = 1, 2, and 4 h). The results suggest potential for using the CO-ES technique as an efficient way to encapsulate SPIONs together with sensitive drugs for the development of multimodal particles that have potential application for combined imaging and therapy.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas de Magnetita/química , Sobrevivência Celular , Compostos Férricos/química , Genisteína/química , Células HeLa , Humanos , Microscopia de Força Atômica , Polímeros/química , Nanomedicina Teranóstica , Triglicerídeos/química
5.
Eur J Pharm Sci ; 102: 147-155, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28249823

RESUMO

In this study conventional electrospinning (ESp) was used to prepare a series of buccal films containing indomethacin (INDO, a nonsteroidal anti-inflammatory drug), Ethocel (10), hydroxypropylmethylcellulose (HPMC) and Tween® 80 at various concentrations. The films were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM), fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Drug release behaviour was assessed in vitro (buffer pH6.8). SEM revealed film morphology and mean fibre diameter was dependent on the process formulation. INDO was encapsulated in the amorphous state once electrospun as evidenced from DSC and XRD studies. The presence of other excipients within fibrous matrices was confirmed using FTIR and Raman spectroscopy. Loading and release of INDO from filamentous structures was influenced by formulation composition; indicating potential to 'fine-tune' dosage forms. Given that ESp is a one-step preparation method and operational at ambient conditions; an attractive route for engineering tailored film type dosage forms is presented. This is a valuable approach for optimizing dosage forms as needed in a single step for various age groups.


Assuntos
Anti-Inflamatórios não Esteroides/química , Celulose/análogos & derivados , Celulose/química , Sistemas de Liberação de Medicamentos , Indometacina/química , Administração Bucal , Anti-Inflamatórios não Esteroides/administração & dosagem , Varredura Diferencial de Calorimetria , Liberação Controlada de Fármacos , Indometacina/administração & dosagem , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Polissorbatos/química , Povidona/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Tensoativos/química , Tecnologia Farmacêutica , Difração de Raios X
6.
Int J Pharm ; 473(1-2): 95-104, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24997411

RESUMO

A method in layering dressings with a superficial active layer of sub-micrometer scaled fibrous structures is demonstrated. For this, polyvinylpyrolidone (PVP)-indomethacin (INDO) fibres (5% w/v PVP, 5% w/w indomethacin, using a 50:50 ethanol-methanol solvent system) were produced at different flow rates (50 µL/min and 100 µL/min) via a modified electrospinning device head (applied voltage varied between 15 ± 2 kV). We further assessed these structures for their morphological, physical and chemical properties using SEM, AFM, DSC, XRD, FTIR and HPLC-UV. The average diameter of the resulting 3D (ca. 500 nm in height) PVP-INDO fibres produced at 50 µL/min flow rate was 2.58 ± 0.30 µm, while an almost two-fold increase in the diameter was observed (5.22 ± 0.83 µm) when the flow rate was doubled. However, both of these diameters were appreciably smaller than the existing dressing fibres (ca. 30 µm), which were visible even when layered with the active spun fibres. Indomethacin was incorporated in the amorphous state. The encapsulation efficiency was 75% w/w, with complete drug release in 45 min. The advantages are the ease of fabrication and deposition onto any existing normal or functionalised dressing (retaining the original fabric functionality), elimination of topical product issues (application, storage and transport), rapid release of active and controlled loading of drug content (fibre layer).


Assuntos
Anti-Inflamatórios não Esteroides/química , Bandagens , Sistemas de Liberação de Medicamentos , Indometacina/química , Povidona/química , Administração Cutânea , Anti-Inflamatórios não Esteroides/administração & dosagem , Varredura Diferencial de Calorimetria , Composição de Medicamentos/métodos , Indometacina/administração & dosagem , Microscopia Eletrônica de Varredura , Povidona/administração & dosagem , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA