Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 10: 1130304, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745122

RESUMO

Introduction: Patients undergoing coronary stent implantation incur a 2% annual rate of adverse events, largely driven by in-stent restenosis (ISR) due to neointimal (NI) tissue proliferation, a process in which smooth muscle cell (SMC) biology may play a central role. Dipyridamole (DP) is an approved therapeutic agent with data supporting improved vascular patency rates. Pre-clinical data supports that DP may enact its vasculoprotective effects via adenosine receptor-A2B (ADOR-A2B). We sought to evaluate the efficacy of DP to mitigate ISR in a pre-clinical rabbit stent model. Methods & Results: 24 New Zealand White Rabbits were divided into two cohorts-non-atherosclerosis and atherosclerosis (n = 12/cohort, 6 male and 6 female). Following stent implantation, rabbits were randomized 1:1 to control or oral dipyridamole therapy for 6 weeks followed by optical coherence tomography (OCT) and histology assessment of NI burden and stent strut healing. Compared to control, DP demonstrated a 16.6% relative reduction in NI volume (14.7 ± 0.8% vs. 12.5 ± 0.4%, p = 0.03) and a 36.2% relative increase in optimally healed stent struts (37.8 ± 2.8% vs. 54.6 ± 2.5%, p < 0.0001). Atherosclerosis demonstrated attenuated effect with no difference in NI burden (15.2 ± 1.0% vs. 16.9 ± 0.8%, p = 0.22) and only a 14.2% relative increase in strut healing (68.3 ± 4.1% vs. 78.7 ± 2.5%, p = 0.02). DP treated rabbits had a 44.6% (p = 0.045) relative reduction in NI SMC content. In vitro assessment of DP and coronary artery SMCs yielded dose-dependent reduction in SMC migration and proliferation. Selective small molecule antagonism of ADOR-A2B abrogated the effects of DP on SMC proliferation. DP modulated SMC phenotypic switching with ADOR-A2B siRNA knockdown supporting its role in the observed effects. Conclusion: Dipyridamole reduces NI proliferation and improves stent healing in a preclinical model of stent implantation with conventional antiplatelets. Atherosclerosis attenuates the observed effect. Clinical trials of DP as an adjunctive agent may be warranted to evaluate for clinical efficacy in stent outcomes.

2.
Circ Res ; 131(1): 42-58, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35611698

RESUMO

BACKGROUND: A significant burden of atherosclerotic disease is driven by inflammation. Recently, microRNAs (miRNAs) have emerged as important factors driving and protecting from atherosclerosis. miR-223 regulates cholesterol metabolism and inflammation via targeting both cholesterol biosynthesis pathway and NFkB signaling pathways; however, its role in atherosclerosis has not been investigated. We hypothesize that miR-223 globally regulates core inflammatory pathways in macrophages in response to inflammatory and atherogenic stimuli thus limiting the progression of atherosclerosis. METHODS AND RESULTS: Loss of miR-223 in macrophages decreases Abca1 gene and protein expression as well as cholesterol efflux to apoA1 (Apolipoprotein A1) and enhances proinflammatory gene expression. In contrast, overexpression of miR-223 promotes the efflux of cholesterol and macrophage polarization toward an anti-inflammatory phenotype. These beneficial effects of miR-223 are dependent on its target gene, the transcription factor Sp3. Consistent with the antiatherogenic effects of miR-223 in vitro, mice receiving miR223-/- bone marrow exhibit increased plaque size, lipid content, and circulating inflammatory cytokines (ie, IL-1ß). Deficiency of miR-223 in bone marrow-derived cells also results in an increase in circulating pro-atherogenic cells (total monocytes and neutrophils) compared with control mice. Furthermore, the expression of miR-223 target gene (Sp3) and pro-inflammatory marker (Il-6) are enhanced whereas the expression of Abca1 and anti-inflammatory marker (Retnla) are reduced in aortic arches from mice lacking miR-223 in bone marrow-derived cells. In mice fed a high-cholesterol diet and in humans with unstable carotid atherosclerosis, the expression of miR-223 is increased. To further understand the molecular mechanisms underlying the effect of miR-223 on atherosclerosis in vivo, we characterized global RNA translation profile of macrophages isolated from mice receiving wild-type or miR223-/- bone marrow. Using ribosome profiling, we reveal a notable upregulation of inflammatory signaling and lipid metabolism at the translation level but less significant at the transcription level. Analysis of upregulated genes at the translation level reveal an enrichment of miR-223-binding sites, confirming that miR-223 exerts significant changes in target genes in atherogenic macrophages via altering their translation. CONCLUSIONS: Our study demonstrates that miR-223 can protect against atherosclerosis by acting as a global regulator of RNA translation of cholesterol efflux and inflammation pathways.


Assuntos
Aterosclerose , Macrófagos , MicroRNAs , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Inflamação/genética , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 42(6): 691-699, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35418246

RESUMO

Immune cell production is governed by a process known as hematopoiesis, where hematopoietic stem cells (HSCs) differentiate through progenitor cells and ultimately to the mature blood and immune cells found in circulation. While HSCs are capable of cell-autonomous regulation, they also rely on extrinsic factors to balance their state of quiescence and activation. These cues can, in part, be derived from the niche in which HSCs are found. Under steady-state conditions, HSCs are found in the bone marrow. This niche is designed to support HSCs but also to respond to external factors, which allows hematopoiesis to be a finely tuned and coordinated process. However, the niche, and its regulation, can become dysregulated to potentiate inflammation during disease. This review will highlight the architecture of the bone marrow and key regulators of hematopoiesis within this niche. Emphasis will be placed on how these mechanisms go awry to exacerbate hematopoietic contributions that drive cardiovascular disease.


Assuntos
Células da Medula Óssea , Hematopoese , Medula Óssea , Ciclo Celular , Células-Tronco Hematopoéticas , Nicho de Células-Tronco
4.
Circ Res ; 130(6): 831-847, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35137605

RESUMO

RATIONALE: Atherosclerosis is characterized by an accumulation of foam cells within the arterial wall, resulting from excess cholesterol uptake and buildup of cytosolic lipid droplets (LDs). Autophagy promotes LD clearance by freeing stored cholesterol for efflux, a process that has been shown to be atheroprotective. While the role of autophagy in LD catabolism has been studied in macrophage-derived foam cells, this has remained unexplored in vascular smooth muscle cell (VSMC)-derived foam cells that constitute a large fraction of foam cells within atherosclerotic lesions. OBJECTIVE: We performed a comparative analysis of autophagy flux in lipid-rich aortic intimal populations to determine whether VSMC-derived foam cells metabolize LDs similarly to their macrophage counterparts. METHODS AND RESULTS: Atherosclerosis was induced in GFP-LC3 (microtubule-associated proteins 1A/1B light chain 3) transgenic mice by PCSK9 (proprotein convertase subtilisin/kexin type 9)-adeno-associated viral injection and Western diet feeding. Using flow cytometry of aortic digests, we observed a significant increase in dysfunctional autophagy of VSMC-derived foam cells during atherogenesis relative to macrophage-derived foam cells. Using cell culture models of lipid-loaded VSMCs and macrophages, we show that autophagy-mediated cholesterol efflux from VSMC foam cells was poor relative to macrophage foam cells, and largely occurs when HDL (high-density lipoprotein) was used as a cholesterol acceptor, as opposed to apoA-1 (apolipoproteinA-1). This was associated with the predominant expression of ABCG1 in VSMC foam cells. Using metformin, an autophagy activator, cholesterol efflux to HDL was significantly increased in VSMC, but not in macrophage, foam cells. CONCLUSIONS: These data demonstrate that VSMC and macrophage foam cells perform cholesterol efflux by distinct mechanisms, and that autophagy flux is highly impaired in VSMC foam cells, but can be induced by pharmacological means. Further investigation is warranted into targeting autophagy specifically in VSMC foam cells, the predominant foam cell subtype of advanced atherosclerotic plaques, to promote reverse cholesterol transport and resolution of the atherosclerotic plaque.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Aterosclerose/metabolismo , Autofagia , Colesterol/metabolismo , Células Espumosas/metabolismo , Leucócitos/metabolismo , Camundongos , Músculo Liso Vascular/metabolismo , Placa Aterosclerótica/patologia , Pró-Proteína Convertase 9/metabolismo
5.
Front Artif Intell ; 4: 761925, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970642

RESUMO

There has been an emerging interest by financial institutions to develop advanced systems that can help enhance their anti-money laundering (AML) programmes. In this study, we present a self-organising map (SOM) based approach to predict which bank accounts are possibly involved in money laundering cases, given their financial transaction histories. Our method takes advantage of the competitive and adaptive properties of SOM to represent the accounts in a lower-dimensional space. Subsequently, categorising the SOM and the accounts into money laundering risk levels and proposing investigative strategies enables us to measure the classification performance. Our results indicate that our framework is well capable of identifying suspicious accounts already investigated by our partner bank, using both proposed investigation strategies. We further validate our model by analysing the performance when modifying different parameters in our dataset.

6.
Endocr Rev ; 42(4): 407-435, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-33523133

RESUMO

Work over the last 40 years has described macrophages as a heterogeneous population that serve as the frontline surveyors of tissue immunity. As a class, macrophages are found in almost every tissue in the body and as distinct populations within discrete microenvironments in any given tissue. During homeostasis, macrophages protect these tissues by clearing invading foreign bodies and/or mounting immune responses. In addition to varying identities regulated by transcriptional programs shaped by their respective environments, macrophage metabolism serves as an additional regulator to temper responses to extracellular stimuli. The area of research known as "immunometabolism" has been established within the last decade, owing to an increase in studies focusing on the crosstalk between altered metabolism and the regulation of cellular immune processes. From this research, macrophages have emerged as a prime focus of immunometabolic studies, although macrophage metabolism and their immune responses have been studied for centuries. During disease, the metabolic profile of the tissue and/or systemic regulators, such as endocrine factors, become increasingly dysregulated. Owing to these changes, macrophage responses can become skewed to promote further pathophysiologic changes. For instance, during diabetes, obesity, and atherosclerosis, macrophages favor a proinflammatory phenotype; whereas in the tumor microenvironment, macrophages elicit an anti-inflammatory response to enhance tumor growth. Herein we have described how macrophages respond to extracellular cues including inflammatory stimuli, nutrient availability, and endocrine factors that occur during and further promote disease progression.


Assuntos
Aterosclerose , Ativação de Macrófagos , Aterosclerose/metabolismo , Homeostase , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo
7.
Circulation ; 143(2): 163-177, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33222501

RESUMO

BACKGROUND: Chronic activation of the innate immune system drives inflammation and contributes directly to atherosclerosis. We previously showed that macrophages in the atherogenic plaque undergo RIPK3 (receptor-interacting serine/threonine-protein kinase 3)-MLKL (mixed lineage kinase domain-like protein)-dependent programmed necroptosis in response to sterile ligands such as oxidized low-density lipoprotein and damage-associated molecular patterns and that necroptosis is active in advanced atherosclerotic plaques. Upstream of the RIPK3-MLKL necroptotic machinery lies RIPK1 (receptor-interacting serine/threonine-protein kinase 1), which acts as a master switch that controls whether the cell undergoes NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells)-dependent inflammation, caspase-dependent apoptosis, or necroptosis in response to extracellular stimuli. We therefore set out to investigate the role of RIPK1 in the development of atherosclerosis, which is driven largely by NF-κB-dependent inflammation at early stages. We hypothesize that, unlike RIPK3 and MLKL, RIPK1 primarily drives NF-κB-dependent inflammation in early atherogenic lesions, and knocking down RIPK1 will reduce inflammatory cell activation and protect against the progression of atherosclerosis. METHODS: We examined expression of RIPK1 protein and mRNA in both human and mouse atherosclerotic lesions, and used loss-of-function approaches in vitro in macrophages and endothelial cells to measure inflammatory responses. We administered weekly injections of RIPK1 antisense oligonucleotides to Apoe-/- mice fed a cholesterol-rich (Western) diet for 8 weeks. RESULTS: We find that RIPK1 expression is abundant in early-stage atherosclerotic lesions in both humans and mice. Treatment with RIPK1 antisense oligonucleotides led to a reduction in aortic sinus and en face lesion areas (47.2% or 58.8% decrease relative to control, P<0.01) and plasma inflammatory cytokines (IL-1α [interleukin 1α], IL-17A [interleukin 17A], P<0.05) in comparison with controls. RIPK1 knockdown in macrophages decreased inflammatory genes (NF-κB, TNFα [tumor necrosis factor α], IL-1α) and in vivo lipopolysaccharide- and atherogenic diet-induced NF-κB activation. In endothelial cells, knockdown of RIPK1 prevented NF-κB translocation to the nucleus in response to TNFα, where accordingly there was a reduction in gene expression of IL1B, E-selectin, and monocyte attachment. CONCLUSIONS: We identify RIPK1 as a central driver of inflammation in atherosclerosis by its ability to activate the NF-κB pathway and promote inflammatory cytokine release. Given the high levels of RIPK1 expression in human atherosclerotic lesions, our study suggests RIPK1 as a future therapeutic target to reduce residual inflammation in patients at high risk of coronary artery disease.


Assuntos
Aterosclerose/metabolismo , Inativação Gênica/fisiologia , Mediadores da Inflamação/metabolismo , NF-kappa B/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/biossíntese , Animais , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Colesterol na Dieta/administração & dosagem , Colesterol na Dieta/efeitos adversos , Feminino , Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
8.
Int J Mol Sci ; 19(8)2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087224

RESUMO

Atherosclerosis is a chronic condition associated with cardiovascular disease. While largely identified by the accumulation of lipid-laden foam cells within the aorta later on in life, atherosclerosis develops over several stages and decades. During atherogenesis, various cell types of the aorta acquire a pro-inflammatory phenotype that initiates the cascade of signaling events facilitating the formation of these foam cells. The liver X receptors (LXRs) are nuclear receptors that upon activation induce the expression of transporters responsible for promoting cholesterol efflux. In addition to promoting cholesterol removal from the arterial wall, LXRs have potent anti-inflammatory actions via the transcriptional repression of key pro-inflammatory cytokines. These beneficial functions sparked an interest in the potential to target LXRs and the development of agonists as anti-atherogenic agents. These early studies focused on mediating the contributions of macrophages to the underlying pathogenesis. However, further evidence has since demonstrated that LXRs reduce atherosclerosis through their actions in multiple cell types apart from those monocytes/macrophages that infiltrate the lesion. LXRs and their target genes have profound effects on multiple other cells types of the hematopoietic system. Furthermore, LXRs can also mediate dysfunction within vascular cell types of the aorta including endothelial and smooth muscle cells. Taken together, these studies demonstrate the whole-body benefits of LXR activation with respect to anti-atherogenesis, and that LXRs remain a viable target for the treatment of atherosclerosis, with a reach which extends beyond plaque macrophages.


Assuntos
Aterosclerose/patologia , Células Espumosas/patologia , Receptores X do Fígado/metabolismo , Animais , Aterosclerose/metabolismo , Colesterol/metabolismo , Células Espumosas/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia
9.
J Am Heart Assoc ; 7(10)2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739800

RESUMO

BACKGROUND: The liver X receptors (LXRs; α/ß) are nuclear receptors known to regulate cholesterol homeostasis and the production of select hematopoietic populations. The objective of this study was to determine the importance of LXRs and a high-fat high-cholesterol diet on global hematopoiesis, with special emphasis on endothelial progenitor cells (EPCs), a vasoreparative cell type that is derived from bone marrow hematopoietic stem cells. METHODS AND RESULTS: Wild-type and LXR double-knockout (Lxrαß -/- ) mice were fed a Western diet (WD) to increase plasma cholesterol levels. In WD-fed Lxrαß -/- mice, flow cytometry and complete blood cell counts revealed that hematopoietic stem cells, a myeloid progenitor, and mature circulating myeloid cells were increased; EPC numbers were significantly decreased. Hematopoietic stem cells from WD-fed Lxrαß -/- mice showed increased cholesterol content, along with increased myeloid colony formation compared with chow-fed mice. In contrast, EPCs from WD-fed Lxrαß -/- mice also demonstrated increased cellular cholesterol content that was associated with greater expression of the endothelial lineage markers Cd144 and Vegfr2, suggesting accelerated differentiation of the EPCs. Treatment of human umbilical vein endothelial cells with conditioned medium collected from these EPCs increased THP-1 monocyte adhesion. Increased monocyte adhesion to conditioned medium-treated endothelial cells was recapitulated with conditioned medium from Lxrαß -/- EPCs treated with cholesterol ex vivo, suggesting cholesterol is the main component of the WD inducing EPC dysfunction. CONCLUSIONS: LXRs are crucial for maintaining the balance of hematopoietic cells in a hypercholesterolemic environment and for mitigating the negative effects of cholesterol on EPC differentiation/secretome changes that promote monocyte-endothelial adhesion.


Assuntos
Células Progenitoras Endoteliais/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Hipercolesterolemia/metabolismo , Receptores X do Fígado/deficiência , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Adesão Celular , Linhagem da Célula , Células Cultivadas , Colesterol na Dieta , Dieta Hiperlipídica , Modelos Animais de Doenças , Células Progenitoras Endoteliais/patologia , Genótipo , Células-Tronco Hematopoéticas/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hipercolesterolemia/sangue , Hipercolesterolemia/patologia , Receptores X do Fígado/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA