Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 480: 136064, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39369674

RESUMO

High arsenic (As), fluoride (F-), and microbial pathogens coexist in semiarid conditions afflicting > 240 million people worldwide including Pakistan. Groundwater quality has declined due to geogenic and manmade activities providing suitable ground for ubiquity, bioavailability, and toxicity of contaminants. We tested the health hazard, distribution, and apportionment of As, F-, and microbes in groundwater around coal mines in Quetta, Pakistan. The range of As, and F- concentrations in groundwater were 0.2-16.6 µg/L, 0.4-18.5 mg/L. Both, As and F- correlate with high HCO3-, pH, Na+, SO42-, Fe, and Mn, and negatively with Ca2+ water. The coalfield showed many folds higher As 15.8-28.5 µg/L, and F- 10.8-34.5 mg/L compared to groundwater-wells. Geochemical phases revealed saturation of groundwater with calcite, dolomite, fluorite, gypsum, and undersaturation with halite-mirabilite, and arsenopyrite minerals. The positive matrix factorization (PMF) model assessed five-factor solutions: geogenic, industrial, coal mining, sulfide & fluoride-bearing mineral-dissolution, and agriculture pollution delivered As, F-, and microbial contamination. About 24.6 % and 64.4 % of groundwater samples exceeded the WHO guidelines of As 10 µg/L, F- 1.5 mg/L. The carcinogenicity, and non-carcinogenicity of As, and F- were higher in children than adults. Therefore, health hazards in children are of great concern in achieving sustainable management goals.

2.
Environ Sci Pollut Res Int ; 31(23): 34396-34414, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38702486

RESUMO

Groundwater contamination with arsenic (As) is a significant concern in Pakistan's Punjab Province. This study analyzed 69 groundwater samples from Faisalabad, Gujranwala, Lahore, and Multan to understand hydrogeochemistry, health impacts, contamination sources, and drinking suitability. Results revealed varying as concentrations across districts, with distinctive cation and anion orders. Faisalabad exhibited Na+ > Mg2+ > Ca2+ > K+ > Fe2+ for cations and SO42- > Cl- > HCO3- > NO3- > F- for anions. Gujranwala showed Na+ > Ca2+ > Mg2+ > K+ for cations and HCO3- > SO42- > Cl- > NO3- > F- for anions. In Lahore, demonstrated: Na+ > Ca2+ > Mg2+ > Fe > K+ for cations and HCO3- > SO42- > Cl- > NO3- > F- for anions. Multan indicated K+ > Ca2+ > Mg2+ > Na+ > Fe for cations and HCO3- > SO42- > Cl- > F- > NO3- ) for anions. Hydrochemical facies were identified as CaHCO3 and CaMgCl types. Principal Component Analysis (PCA), highlighted the influence of natural processes and human activities on groundwater pollution. Water Quality Index (WQI) result reveal that most samples met water quality standards. The carcinogenic risk values for children exceeded permissible limits in all districts, emphasizing a significant cancer risk. The study highlights the need for rigorous monitoring to mitigate (As) contamination and protect public health from associated hazards.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Poluentes Químicos da Água , Qualidade da Água , Água Subterrânea/química , Paquistão , Poluentes Químicos da Água/análise , Arsênio/análise , Humanos
3.
Environ Monit Assess ; 196(5): 480, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676764

RESUMO

The objective of the current research was to examine the water quality of the River Ravi and the River Sutlej, with a specific focus on potentially toxic elements (PTEs). Additionally, we sought to monitor the sources of pollution in these rivers by gathering samples from the primary drains that carry industrial and municipal waste into these water bodies. Furthermore, we aimed to evaluate the impact of PTEs in surface water on groundwater quality by collecting groundwater samples from nearby populated areas. A total of 30 samples were collected from these three sources: rivers (6 samples), drains (9 samples), and groundwater (15 samples). The analysis revealed that the levels of PTEs in the samples from these three resources having a mean value: arsenic (As) 23.5 µg/L, zinc (Zn) 2.35 mg/L, manganese (Mn) 0.51 mg/L, lead (Pb) 6.63 µg/L, and chromium (Cr) 10.9 µg/L, exceeded the recommended values set by the World Health Organization (WHO). Furthermore, PTEs including (As 84%), (Zn 65%), (Mn 69%), (Pb 53%), (Cr 53%), and (Ni 27%), samples were beyond the recommended values of WHO. The results of the Principal Component Analysis indicated that surface water and groundwater exhibited total variability of 83.87% and 85.97%, respectively. This indicates that the aquifers in the study area have been contaminated due to both natural geogenic factors and anthropogenic sources. These sources include the discharge of industrial effluents, wastewater from municipal sources, mining activities, agricultural practices, weathering of rocks, and interactions between rocks and water. Spatial distribution maps clearly illustrated the widespread mobilization of PTEs throughout the study area. Furthermore, a health risk assessment was conducted to evaluate the potential adverse health effects of PTEs through the ingestion of drinking groundwater by both children and adults. Health risk assessment result show the mean carcinogenic values for As, Cr, Pb and Ni in children are calculated to be (1.88E-04), (2.61E-04), (2.16E-02), and (5.74E-05), respectively. Similarly, the mean carcinogenic values for the above mentioned PTEs in adults were recorded to be (2.39E-05), (3.32E-05), (1.19E-03), and (7.29E-06) respectively. The total hazard index values for As, Zn, Cr, Pb, Mn, Cu, and Ni in children were observed to be (9.07E + 00), (9.95E-07), (4.59E-04), (5.75E-04), (4.72E-05), (2.78E-03), and (5.27E-05) respectively. The analysis revealed that As has an adverse effect on the population of the study area as compared to other PTEs investigated in this study.


Assuntos
Arsênio , Monitoramento Ambiental , Água Subterrânea , Rios , Poluentes Químicos da Água , Água Subterrânea/química , Poluentes Químicos da Água/análise , Rios/química , Arsênio/análise , Medição de Risco , Humanos , Metais Pesados/análise
4.
J Hazard Mater ; 469: 134023, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38492393

RESUMO

Chronic exposure to high fluoride (F-) levels in groundwater causes community fluorosis and non-carcinogenic health concerns in local people. This study described occurrence, dental fluorosis, and origin of high F-groundwater using δ2H and δ18O isotopes at semiarid Gilgit, Pakistan. Therefore, groundwater (n = 85) was collected and analyzed for F- concentrations using ion-chromatography. The lowest F- concentration was 0.4 mg/L and the highest 6.8 mg/L. F- enrichment is linked with higher pH, NaHCO3, NaCl, δ18O, Na+, HCO3-, and depleted Ca+2 aquifers. The depleted δ2H and δ18O values indicated precipitation and higher values represented the evaporation effect. Thermodynamic considerations of fluorite minerals showed undersaturation, revealing that other F-bearing minerals viz. biotite and muscovite were essential in F- enrichment in groundwater. Positive matrix factorization (PMF) and principal component analysis multilinear regression (PCAMLR) models were used to determine four-factor solutions for groundwater contamination. The PMF model results were accurate and reliable compared with those of the PCAMLR model, which compiled the overlapping results. Therefore, 28.3% exceeded the WHO permissible limit of 1.5 mg/L F-. Photomicrographs of granite rocks showed enriched F-bearing minerals that trigger F- in groundwater. The community fluorosis index values were recorded at > 0.6, revealing community fluorosis and unsuitability of groundwater for drinking.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Humanos , Fluoretos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Minerais/análise , Água Subterrânea/química , Isótopos/análise
5.
Sci Rep ; 13(1): 20455, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993472

RESUMO

Arsenic (As), contamination in drinking groundwater resources is commonly environmental problem in many developing countries including Pakistan, with significant human health risk reports. In order to examine the groundwater quality concerning As contamination, its geochemical behavior along with physicochemical parameters, 42 samples were collected from community tube wells from District Bahawalpur, Punjab, Pakistan. The results showed the concentration of elevated As, its source of mobilization, and associated public health risk. The As concentration detected in groundwater samples varied from 0.12 to 104 µg/L with an average value of 34.7 µg/L. Among 42 groundwater samples, 27 samples were beyond the permitted limit of 10 µg/L recommended by World Health Organization (WHO), for drinking purposes. Statistical analysis result show that the groundwater cations values are in decreasing order such as: Na+ > Mg2+ > Ca2+ > K+, while anions were HCO3- > SO42- > Cl- > NO3-. Hydrochemical facies result depict that the groundwater samples of the study area, 14 samples belong to CaHCO3 type, 5 samples belong to NaCl type, 20 samples belong to Mixed CaMgCl type, and 3 samples belong to CaCl2 type. It can be accredited due to weathering and recharge mechanism, evaporation processes, and reverse ion exchange. Gibbs diagram shows that rock water interaction controls the hydrochemistry of groundwater resources of the study area. Saturation Index (SI) result indicated the saturation of calcite, dolomite, gypsum, geothite, and hematite mineral due their positive SI values. The principal component analysis (PCA) results possess a total variability of 80.69% signifying the anthropogenic and geogenic source of contamination. The results of the exposure-health-risk-assessment method for measuring As reveal significant potential non-carcinogenic risk (HQ), exceeding the threshold level of (> 1) for children in the study area. Water quality assessment results shows that 24 samples were not suitable for drinking purposes.


Assuntos
Arsênio , Água Potável , Água Subterrânea , Poluentes Químicos da Água , Criança , Humanos , Qualidade da Água , Monitoramento Ambiental , Arsênio/análise , Poluentes Químicos da Água/análise , Água Subterrânea/análise , Água Potável/análise
6.
Emerg Microbes Infect ; 12(2): 2271065, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37824698

RESUMO

ABBREVIATIONS: AIDS: acquired immune deficiency syndrome; CI: confidence interval; EPHI: Ethiopian Public Health Institute; HAART: highly active antiretroviral therapy; HIV: human immunodeficiency virus; HR: hazard ratio; Mg/dl: milligram per deciliter; TB: tuberculosis; PCP: pneumocystis carinii pneumonia; ZJU: Zhejiang University.


Assuntos
Infecções Oportunistas Relacionadas com a AIDS , Síndrome da Imunodeficiência Adquirida , Infecções por HIV , Neoplasias , Humanos , Feminino , Etiópia/epidemiologia , Infecções Oportunistas Relacionadas com a AIDS/epidemiologia , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Terapia Antirretroviral de Alta Atividade
7.
J Hazard Mater ; 460: 132443, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666175

RESUMO

Fluoride (F-), and arsenic (As) in the groundwater cause health problems in developing countries, including Pakistan. We evaluated the occurrence, distribution, sources apportionment, and health hazards of F-, and As in the groundwater of Mardan, Pakistan. Therefore, groundwater samples (n = 130) were collected and then analyzed for F-, and As by ion-chromatography (IC) and Inductively-coupled plasma mass-spectrometry (ICP-MS). The F-, and As concentrations in groundwater were 0.7-14.4 mg/L and 0.5-11.2 µg/L. Relatively elevated F-, and As coexists with higher pH, Na+, HCO3-, SO4-2, and depleted Ca+2 due to fluoride, sulfide-bearing minerals, and anthropogenic inputs. Both F-, and/or As are transported in subsurface water through adsorption and desorption processes. Groundwater samples 45%, and 14.2% exceeded the WHO guidelines of 1.5 mg/L and 10 µg/L. Water quality indexing (WQI-model) declared that 35.7% samples are unfit for household purposes. Saturation and undersaturation of minerals showed precipitation and mineral dissolution. Groundwater contamination by PCA-MLR and PMF-model interpreted five factors. The fitting results and R2 values of PMF (0.52-0.99)>PCA-MLR (0.50-0.95) showed high accuracy of PMF-model. Human health risk assessment (HHRA-model) revealed high non-carcinogenic and carcinogenic risk for children than adults. The percentile recovery of F- and As was recorded 98%, and 95% with reproducibility ± 5% error.


Assuntos
Arsênio , Água Subterrânea , Adulto , Criança , Humanos , Fluoretos/toxicidade , Reprodutibilidade dos Testes , Qualidade da Água
8.
Environ Monit Assess ; 195(7): 863, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336819

RESUMO

Potentially toxic metals (PTMs) contamination in the soil poses a serious danger to people's health by direct or indirect exposure, and generally it occurs by consuming food grown in these soils. The present study assessed the pollution levels and risk to human health upon sustained exposure to PTM concentrations in the area's centuries-old glass industry clusters of the city of Firozabad, Uttar Pradesh, India. Soil sampling (0-15 cm) was done in farmers' fields within a 1 km radius of six industrial clusters. Various environmental (geo-accumulation index, contamination factor, pollution load index, enrichment factor, and ecological risk index) and health risk indices (hazard quotient, carcinogenic risk) were computed to assess the extent of damage caused to the environment and the threat to human health. Results show that the mean concentrations of Cu (33 mg kg-1), Zn (82.5 mg kg-1), and Cr (15.3 mg kg-1) were at safe levels, whereas the levels of Pb, Ni, and Cd exceeded their respective threshold limits. A majority of samples (88%) showed considerable ecological risk due to the co-contamination of these six PTMs. Health risk assessment indicated tolerable cancer and non-cancer risk in both adults and children for all PTMs, except Ni, where adults were exposed to potential threat of cancer. Pearson's correlation study revealed a significant positive correlation between all six metal pairs and conducting principal component analysis (PCA) confirmed the common source of metal pollution. The PC score ranked different sites from highest to lowest according to PTM loads that help to establish the location of the source. Hierarchical cluster analysis grouped different sites into the same cluster based on similarity in PTMs load, i.e., low, medium, and high.


Assuntos
Metais Pesados , Poluentes do Solo , Criança , Adulto , Humanos , Solo , Monitoramento Ambiental/métodos , Metais Pesados/análise , Poluentes do Solo/análise , Intoxicação por Metais Pesados , Índia , Medição de Risco , China
9.
Artigo em Inglês | MEDLINE | ID: mdl-36767482

RESUMO

Groundwater contamination by heavy metals (HMs) released by weathering and mineral dissolution of granite, gneisses, ultramafic, and basaltic rock composition causes human health concerns worldwide. This paper evaluated the heavy metals (HMs) concentrations and physicochemical variables of groundwater around enriched chromite mines of Malakand, Pakistan, with particular emphasis on water quality, hydro-geochemistry, spatial distribution, geochemical speciation, and human health impacts. To better understand the groundwater hydrogeochemical profile and HMs enrichment, groundwater samples were collected from the mining region (n = 35), non-mining region (n = 20), and chromite mines water (n = 5) and then analyzed using ICPMS (Agilent 7500 ICPMS). The ranges of concentrations in the mining, non-mining, and chromite mines water were 0.02-4.5, 0.02-2.3, and 5.8-6.0 mg/L for CR, 0.4-3.8, 0.05-3.6, and 3.2-5.8 mg/L for Ni, and 0.05-0.8, 0.05-0.8, and 0.6-1.2 mg/L for Mn. Geochemical speciation of groundwater variables such as OH-, H+, Cr+2, Cr+3, Cr+6, Ni+2, Mn+2, and Mn+3 was assessed by atomic fluorescence spectrometry (AFS). Geochemical speciation determined the mobilization, reactivity, and toxicity of HMs in complex groundwater systems. Groundwater facies showed 45% CaHCO3, 30% NaHCO3, 23.4% NaCl, and 1.6% Ca-Mg-Cl water types. The noncarcinogenic and carcinogenic risk of HMs outlined via hazard quotient (HQ) and total hazard indices (THI) showed the following order: Ni > Cr > Mn. Thus, the HHRA model suggested that children are more vulnerable to HMs toxicity than adults. Hierarchical agglomerative cluster analysis (HACA) showed three distinct clusters, namely the least, moderately, and severely polluted clusters, which determined the severity of HMs contamination to be 66.67% overall. The PCAMLR and PMF receptor model suggested geogenic (minerals prospects), anthropogenic (industrial waste and chromite mining practices), and mixed (geogenic and anthropogenic) sources for groundwater contamination. The mineral phases of groundwater suggested saturation and undersaturation. Nemerow's pollution index (NPI) values determined the unsuitability of groundwater for domestic purposes. The EC, turbidity, PO4-3, Na+, Mg+2, Ca+2, Cr, Ni, and Mn exceeded the guidelines suggested by the World Health Organization (WHO). The HMs contamination and carcinogenic and non-carcinogenic health impacts of HMs showed that the groundwater is extremely unfit for drinking, agriculture, and domestic demands. Therefore, groundwater wells around the mining region need remedial measures. Thus, to overcome the enrichment of HMs in groundwater sources, sustainable management plans are needed to reduce health risks and ensure health safety.


Assuntos
Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Adulto , Criança , Humanos , Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Metais Pesados/análise , Qualidade da Água , Água Subterrânea/química , Minerais/análise , Medição de Risco , Poluentes Químicos da Água/análise
10.
Biol Trace Elem Res ; 201(1): 514-524, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35171408

RESUMO

Potable groundwater (GW) contamination through arsenic (As) is a commonly reported environmental issue in Pakistan. In order to examine the groundwater quality for As contamination, its geochemical behavior, and other physicochemical parameters, 69 samples from various groundwater sources were collected from the mining area of Pind Dadan Khan, Punjab, Pakistan. The results showed the concentration of elevated As, its source of mobilization, and linked public health risk. Arsenic detected in the groundwater samples varied from 0.5 to 100 µg/L, with an average value of 21.38 µg/L. Forty-two samples were beyond the acceptable limit of 10 µg/L of the WHO for drinking purposes. The statistical summary showed that the groundwater cation concentration was in decreasing order such as Na+ > Ca2+ > Mg2+ > K+, while anions were as follows: HCO3- > SO42- > Cl- > NO3-. Hydrochemical facies results depicted that groundwater samples belong to CaHCO3 type. Rock-water interactions control the hydrochemistry of groundwater. Saturation indices' results indicated the saturation of the groundwater sources for CO3 minerals due to their positive SI values. Such minerals include aragonite, calcite, dolomite, and fluorite. The principal component analysis (PCA) findings possess a total variability of 77.36% suggesting the anthropogenic and geogenic contributing sources of contaminant. The results of the Exposure-health-risk-assessment model for measuring As reveal significant potential carcinogenic risk exceeding the threshold level (value > 10-4) and HQ level (value > 1.0).


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Água , Arsênio/análise , Paquistão , Poluentes Químicos da Água/análise , Minerais/análise , Água Subterrânea/análise , Qualidade da Água
11.
Front Immunol ; 13: 911806, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211390

RESUMO

CRF07_BC is one of the most prevalent HIV-1 strains in China, which contributes over one-third of the virus transmissions in the country. In general, CRF07_BC is associated with slower disease progression, while the underlying mechanisms remain unclear. Our study focused on envelope proteins (Env) and its V3 loop which determine viral binding to co-receptors during infection of cells. We studied a large dataset of 3,937 env sequences in China and found that CRF07_BC had a unique profile of predominantly single CCR5 tropism compared with CCR5 and CXCR4 dual tropisms in other HIV-1 subtypes. The percentages of the CXCR4-tropic virus in B (3.7%) and CRF01_AE (10.4%) infection are much higher than that of CRF07_BC (0.1%), which is supported by median false-positive rates (FPRs) of 69.8%, 25.5%, and 13.4% for CRF07_BC, B, and CRF01_AE respectively, with a cutoff FPR for CXCR4-tropic at 2%. In this study, we identified the first pure CXCR4-tropic virus from one CRF07_BC-infected patient with an extremely low CD4+T cell count (7 cells/mm3). Structural analysis found that the V3 region of this virus has the characteristic 7T and 25R and a substitution of conserved "GPGQ" crown motif for "GPGH". This study provided compelling evidence that CRF07_BC has the ability to evolve into CXCR4 strains. Our study also lay down the groundwork for studies on tropism switch, which were commonly done for other HIV-1 subtypes, for the long-delayed CRF07_BC.


Assuntos
Infecções por HIV , HIV-1 , China , Produtos do Gene env , Infecções por HIV/epidemiologia , HIV-1/genética , HIV-1/metabolismo , Humanos , Receptores CCR5/metabolismo , Receptores CXCR4 , Ligação Viral
12.
Environ Pollut ; 311: 119961, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35977638

RESUMO

In the past few decades, contamination of urban children's parks (UCPs) with potentially toxic elements (PTEs) has been attracting more and more interest; however, assessment of eco-environmental and child exposure risks particularly in developing countries remains limited. The current study investigated PTE (Cr, Ni, Zn, As, Cd, and Pb) concentrations, potential sources, and their health risk assessment in UCP soils of 12 major cities in Pakistan. The results showed that the mean concentration of Ni exceeded the SEPA-permissible limit in all UCP sites, while other PTEs were found to be within acceptable limits. The soil properties such as pH, electrical conductivity, organic matter, and soil particles size were determined in UCPs soils. The contamination factor and pollution load index results indicated low to moderate pollution levels (CF < 3) and (PLI<1) for all PTEs except Ni in some of the selected cities. Quantile-quantile (Q-Q) plotting determined the normal distribution line for all PTEs in the UCPs. Principal component analysis showed the mixed sources of contamination from industrial emissions, fossil fuel combustion, vehicular emissions, wastewater irrigation, as well as solid waste disposal and natural sources of soil parent materials in all park sites. ANOVA results showed that all the PTEs except Cd had moderate to higher contamination values than the reference site. The risk assessment study revealed that children had high exposure to the selected PTEs via all exposure pathways. The hazard index (HI) mean value (1.82E+00) of Ni for all exposure pathways was greater than 1, while total risk value of Cr (1.00E-03) had exceeded USEPA limit, indicating cancer risk. Consequently, the study of UCPs soils revealed PTEs contamination that could pose a potential health risk to the local population in the studied UCPs regions of Pakistan. Thus, the present study recommends that the influx of PTEs originating from natural and anthropogenic sources should be mitigated and government should implement strict enforcement of environmental regulations and proper management, as well as air quality monitoring guidelines for public health should be strictly adopted to reduce traffic- and industrial emission-related to PTEs in metropolitan areas.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , Criança , China , Monitoramento Ambiental/métodos , Humanos , Metais Pesados/análise , Paquistão , Medição de Risco , Solo/química , Poluentes do Solo/análise , População Urbana , Águas Residuárias/análise
13.
Artigo em Inglês | MEDLINE | ID: mdl-35897434

RESUMO

Fluoride (F-) contamination in drinking groundwater is a significant human health risk in Pakistan. Moreover, high fluoride pollution in drinking water causes a variety of disorders, including dental, neurological, and skeletal fluorosis. The aim of this research was to evaluate the health risk of elevated fluoride in groundwater and its suitability assessment for drinking purposes. The total of (n = 37) samples were collected from community tube wells of Quetta Valley, Balochistan, Pakistan. The results show a mean pH value of 7.7, TDS of 404.6 mg/L, EC of 500 µs/cm, depth of 96.8 feet, and turbidity of 1.7 nephelometric turbidity units. The mean values of HCO3-, Ca2+, Mg2+, and Na+, were 289.5, 47.5, 30.6, and 283.3 mg/L, respectively. The mean values of SO42-, NO3-, K+, Cl-, and Fe2+, were 34.9, 1.0, 1.6, 25.6, and 0.01 mg/L, respectively. The F- concentration in the groundwater varied between 0.19 and 6.21, with a mean value of 1.8 mg/L, and 18 samples out of 37 were beyond the WHO recommended limit of 1.5 mg/L. The hydrochemical analysis results indicated that among the groundwater samples of the study area, 54% samples were Na-HCO3 type and 46% were mixed CaNaHCO3 type. The saturation indices of the mineral phases reveal that the groundwater sources of the study area were saturated with CaCO3 and halide minerals due to their positive (SI) values. Such minerals include calcite, dolomite, gypsum, and fluorite. The principal component analysis results reveal that the groundwater sources of the study area are contaminated due to geological and anthropogenic actions. The health risk assessment results of the F- concentrations show the ranges of ADDingestion for children, females, and males in the Quetta Valley, and their mean values were observed to be 0.093052, 0.068825, and 0.065071, respectively. The HQingestion mean values were 1.55086, 1.147089, and 1.084521 for children, females, and males, respectively. It was noticed that children had the highest maximum and average values of ADDingestion and HQingestion in the research area, indicating that groundwater fluoride intake poses the greatest health risk to children. The water quality index (WQI) analyses show that 44% of the samples belong to the poor-quality category, 49% were of good quality, and 8% of the samples of the study area belong to the excellent category.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Criança , Água Potável/análise , Monitoramento Ambiental/métodos , Feminino , Fluoretos/análise , Água Subterrânea/análise , Humanos , Masculino , Minerais/análise , Medição de Risco , Poluentes Químicos da Água/análise , Qualidade da Água
14.
Artigo em Inglês | MEDLINE | ID: mdl-35682055

RESUMO

Groundwater contamination by potentially harmful elements (PHEs) originating from the weathering of granitic and gneissic rock dissolution poses a public health concern worldwide. This study investigated physicochemical variables and PHEs in the groundwater system and mine water of the Adenzai flood plain region, in Pakistan, emphasizing the fate distribution, source provenance, chemical speciation, and health hazard using the human health risk assessment HHRA-model. The average concentrations of the PHEs, viz., Ni, Mn, Cr, Cu, Cd, Pb, Co, Fe, and Zn 0.23, were 0.27, 0.07, 0.30, 0.07, 0.06, 0.08, 0.68, and 0.23 mg/L, respectively. The average values of chemical species in the groundwater system, viz., H+, OH−, Ni2+, Mn2+, Mn3+, Cr3+, Cr6+, Cu+, Cu2+, Cd2+, Pb2+, Pb4+, Co2+, Co3+, Fe2+, Fe3+, and Zn2+, were 1.0 × 10−4 ± 1.0 × 10−6, 1.0 × 10−4 ± 9.0 × 10−7, 2.0 × 10−1 ± 1.0 × 10−3, 3.0 × 10−1 ± 1.0 × 10−3, 1.0 × 10−22 ± 1.0 × 10−23, 4.0 × 10−6 ± 2.0 × 10−6, 4.0 × 10−11 ± 2.0 × 10−11, 9.0 × 10−3 ± 1.0 × 10−2, 2.0 × 10−1 ± 2.0 × 10−3, 7.0 × 10−2 ± 6.0 × 10−2, 5.0 × 10−2 ± 5.0 × 10−2, 2.0 × 10−2 ± 1.5 × 10−2, 6.0 × 10−2 ± 4.0 × 10−2, 8.0 × 10−31 ± 6.0 × 10−31, 3.0 × 10−1 ± 2.0 × 10−4, 4.0 × 10−10 ± 3.0 × 10−10, and 2.0 × 10−1 ± 1.0 × 10−1. The mineral compositions of PHEs, viz. Ni, were bunsenite, Ni(OH)2, and trevorite; Mn viz., birnessite, bixbyite, hausmannite, manganite, manganosite, pyrolusite, and todorokite; Cr viz., chromite and eskolaite; Cu viz., CuCr2O4, cuprite, delafossite, ferrite-Cu, and tenorite; Cd viz., monteponite; Pb viz, crocoite, litharge, massicot, minium, plattnerite, Co viz., spinel-Co; Fe viz., goethite, hematite, magnetite, wustite, and ferrite-Zn; and Zn viz., zincite, and ZnCr2O4 demarcated undersaturation and supersaturation. However, EC, Ca2+, K+, Na+, HCO3−, Cr, Cd, Pb, Co, and Fe had exceeded the WHO guideline. The Nemerow's pollution index (NPI) showed that EC, Ca2+, K+, Na+, HCO3−, Mn, Cd, Pb, Co, and Fe had worse water quality. Principal component analysis multilinear regression (PCAMLR) and cluster analysis (CA) revealed that 75% of the groundwater contamination originated from geogenic inputs and 18% mixed geogenic-anthropogenic and 7% anthropogenic sources. The HHRA-model suggested potential non-carcinogenic risks, except for Fe, and substantial carcinogenic risks for evaluated PHEs. The women and infants are extremely exposed to PHEs hazards. The non-carcinogenic and carcinogenic risks in children, males, and females had exceeded their desired level. The HHRA values of PHEs exhibited the following increasing pattern: Co > Cu > Mn > Zn > Fe, and Cd > Pb > Ni > Cr. The higher THI values of PHEs in children and adults suggested that the groundwater consumption in the entire region is unfit for drinking, domestic, and agricultural purposes. Thus, all groundwater sources need immediate remedial measures to secure health safety and public health concerns.


Assuntos
Água Subterrânea , Metais Pesados , Adulto , Cádmio/análise , Criança , Monitoramento Ambiental , Feminino , Humanos , Chumbo/análise , Metais Pesados/análise , Saúde Pública , Medição de Risco , Qualidade da Água
15.
Environ Sci Pollut Res Int ; 29(50): 75744-75768, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35661301

RESUMO

Globally, potentially toxic elements (PTEs) and bacterial contamination pose health hazards, persistency, and genotoxicity in the groundwater aquifer. This study evaluates PTE concentration, carcinogenic and noncarcinogenic health hazards, groundwater quality indexing (GWQI-model), source provenance, and fate distribution in the groundwater of Hindukush ranges, Pakistan. The new estimates of USEPA equations record new research dimensions for carcinogenic and noncarcinogenic hazards. The principal component analysis (PCA), mineral phases, and spatial distribution determine groundwater contamination and its impacts. The average concentrations of PTEs, viz., Cd, Cu, Co, Fe, Pb, and Zn, were 0.06, 0.27, 0.07, 0.55, 0.05, and 0.19 mg/L, and E. coli, F. coli, and P. coli were 27.5, 24.0, and 19.0 CFU/100 ml. Moreover, the average values of basic minerals, viz., anhydrite, aragonite, calcite, dolomite, gypsum, halite, and hydroxyl apatite, were 0.4, 2.4, 2.6, 5.1, 0.6, and - 4.0, 11.2, and PTE minerals like monteponite, tenorite, cuprite, cuprous ferrite, cupric ferrite, ferrihydrite, goethite, hematite, lepidocrocite, maghemite, magnetite, massicot, minium, litharge, plattnerite, and zincite were - 5.5, 2.23, 4.65, 18.56, 20.0, 4.84, 7.54, 17.46, 6.66, 9.67, 22.72, - 3.36, 22.9, 3.16, - 18.0, and 1.46. The groundwater showed carcinogenic and non-carcinogenic health hazards for children and adults. The GWQI-model showed that 58.3% of samples revealed worse water quality. PCA revealed rock weathering, mineral dissolution, water-rock interaction, and industrial effluents as the dominant factors influencing groundwater chemistry. Carbonate weathering and ion exchange play vital roles in altering CaHCO3 type to NaHCO3 water. In this study, E. coli, F. coli, P. coli, EC, turbidity, TSS, PO43─, Na+, Mg+2, Ca+2, Cd, Co, Fe, and Pb have exceeded the World Health Organization (WHO) guidelines. The carcinogenic and non-carcinogenic impacts of PTEs and bacterial contamination declared that the groundwater is unfit for drinking and domestic purposes.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Adulto , Apatitas , Cádmio/análise , Carbonato de Cálcio/análise , Sulfato de Cálcio/análise , Carcinógenos/análise , Criança , Monitoramento Ambiental/métodos , Escherichia coli , Compostos Férricos , Óxido Ferroso-Férrico/análise , Sistemas de Informação Geográfica , Água Subterrânea/análise , Humanos , Chumbo/análise , Minerais/análise , Paquistão , Medição de Risco , Poluentes Químicos da Água/análise , Qualidade da Água
16.
Pak J Pharm Sci ; 24(4): 435-43, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21959802

RESUMO

Conventional dosage form is nowadays mostly replaced by sustained release formulation in order to increase drug efficacy and patient compliance. The sustained release properties of the PVP K90 alone and in combination with guar gum, xanthan gum and gum tragacanth were evaluated using diclofenac sodium (100 mg/tablet) as a model drug. Tablets were processed using wet granulation method and evaluated for sustained drug release properties. The drug release from the formulations was studied in relationship with Commercially available Diclofenac Sodium SR, used as a reference tablets and results were expressed as similarity (f1) and differential factor (f2). The tablets prepared using PVP K90 160 mg/tablet sustained the release of diclofenac sodium for 12 hours. Formulations where the PVP K90 was partially replaced with different gums also sustained the release of drug for 12 hours. The release of the drug from these formulations mainly followed Higuchi model and super case-II and Non-Fickian diffusion. The in-vivo drug release was studied in healthy human volunteers using non-blinded cross over, two period design using Diclofenac Sodium SR Tablets as a reference drug. The relative bioavailability of the formulation containing PVP K90 and gum tragacanth was 0.91. The studies showed that the use of the PVP K90 in combination with gum tragacanth both in-vitro and in-vivo sustained the release of the drug.


Assuntos
Diclofenaco/administração & dosagem , Diclofenaco/farmacocinética , Gomas Vegetais/química , Povidona/química , Adulto , Área Sob a Curva , Disponibilidade Biológica , Estudos Cross-Over , Preparações de Ação Retardada/química , Diclofenaco/sangue , Galactanos/química , Dureza , Humanos , Masculino , Mananas/química , Polissacarídeos Bacterianos/química , Comprimidos , Tragacanto/química , Adulto Jovem
17.
Mymensingh Med J ; 11(1): 6-8, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12148402

RESUMO

A total of 78 cases with thyroid diseases were treated surgically in the Department of ENTD, Mymensingh Medical College Hospital during the period from 2000-2001. The different types of surgery were done according to the diagnosis being presented here. Out of 78 cases, 60 (76.9%) were female and 18 (23.1%) were male having female to male ratio of 3.3:1. The highest number, 47 cases (60.3%) belongs to 21-40 year age group. The study revealed the incidence of thyroid diseases as follows: 53 (67.9%) Benign cold single nodular goitre. 17(21.8%) Benign cold multinodular goitre and 08 (10.3%) Papillary carcinoma of thyroid. Regarding surgical management 40 (51.3%) patients underwent hemithyroidectomy. Lobectomy were done for 13 (16.7%), subtotal thyroidectomy for 15 (19.2%), total thyroidectomy for 5 (6.4%) patients and total thyroidectomy with functional neck dissection were performed for 5 (6.4%) patients. The study showed that females were the mostly affected group having benign single cold nodular goitre who were treated surgically by hemithyroidectomy.


Assuntos
Doenças da Glândula Tireoide/cirurgia , Adulto , Idoso , Carcinoma Papilar/cirurgia , Criança , Feminino , Bócio Nodular/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Neoplasias da Glândula Tireoide/cirurgia , Nódulo da Glândula Tireoide/cirurgia , Tireoidectomia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA