Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Anat ; 245(2): 271-288, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38613211

RESUMO

Auditory sensitivity and frequency resolution depend on the optimal transfer of sound-induced vibrations from the basilar membrane (BM) to the inner hair cells (IHCs), the principal auditory receptors. There remains a paucity of information on how this is accomplished along the frequency range in the human cochlea. Most of the current knowledge is derived either from animal experiments or human tissue processed after death, offering limited structural preservation and optical resolution. In our study, we analyzed the cytoarchitecture of the human cochlear partition at different frequency locations using high-resolution microscopy of uniquely preserved normal human tissue. The results may have clinical implications and increase our understanding of how frequency-dependent acoustic vibrations are carried to human IHCs. A 1-micron-thick plastic-embedded section (mid-modiolar) from a normal human cochlea uniquely preserved at lateral skull base surgery was analyzed using light and transmission electron microscopy (LM, TEM). Frequency locations were estimated using synchrotron radiation phase-contrast imaging (SR-PCI). Archival human tissue prepared for scanning electron microscopy (SEM) and super-resolution structured illumination microscopy (SR-SIM) were also used and compared in this study. Microscopy demonstrated great variations in the dimension and architecture of the human cochlear partition along the frequency range. Pillar cell geometry was closely regulated and depended on the reticular lamina slope and tympanic lip angle. A type II collagen-expressing lamina extended medially from the tympanic lip under the inner sulcus, here named "accessory basilar membrane." It was linked to the tympanic lip and inner pillar foot, and it may contribute to the overall compliance of the cochlear partition. Based on the findings, we speculate on the remarkable microanatomic inflections and geometric relationships which relay different sound-induced vibrations to the IHCs, including their relevance for the evolution of human speech reception and electric stimulation with auditory implants. The inner pillar transcellular microtubule/actin system's role of directly converting vibration energy to the IHC cuticular plate and ciliary bundle is highlighted.


Assuntos
Cóclea , Órgão Espiral , Humanos , Cóclea/anatomia & histologia , Cóclea/fisiologia , Órgão Espiral/anatomia & histologia , Órgão Espiral/fisiologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Transdução de Sinais/fisiologia , Membrana Basilar/anatomia & histologia , Membrana Basilar/fisiologia
2.
Laryngoscope ; 134(6): 2889-2897, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38189807

RESUMO

OBJECTIVES: To use synchrotron radiation phase-contrast imaging (SR-PCI) to visualize and measure the morphology of the entire cochlear scala tympani (ST) and assess cochlear implant (CI) electrode trajectories. METHODS: SR-PCI images were used to obtain geometric measurements of the cochlear scalar diameter and area at 5-degree increments in 35 unimplanted and three implanted fixed human cadaveric cochleae. RESULTS: The cross-sectional diameter and area of the cochlea were found to decrease from the base to the apex. This study represents a wide variability in cochlear morphology and suggests that even in the smallest cochlea, the ST can accommodate a 0.4 mm diameter electrode up to 720°. Additionally, all lateral wall array trajectories were within the anatomically accommodating insertion zone. CONCLUSION: This is the first study to use SR-PCI to visualize and quantify the entire ST morphology, from the round window to the apical tip, and assess the post-operative trajectory of electrodes. These high-resolution anatomical measurements can be used to inform the angular insertion depth that can be accommodated in CI patients, accounting for anatomical variability. LEVEL OF EVIDENCE: N/A. Laryngoscope, 134:2889-2897, 2024.


Assuntos
Cadáver , Implante Coclear , Implantes Cocleares , Rampa do Tímpano , Síncrotrons , Humanos , Implante Coclear/métodos , Rampa do Tímpano/cirurgia , Rampa do Tímpano/anatomia & histologia , Cóclea/cirurgia , Cóclea/anatomia & histologia , Cóclea/diagnóstico por imagem
3.
Front Immunol ; 13: 965196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159857

RESUMO

Background: Human inner ear contains macrophages whose functional role in early development is yet unclear. Recent studies describe inner ear macrophages act as effector cells of the innate immune system and are often activated following acoustic trauma or exposure to ototoxic drugs. Few or limited literature describing the role of macrophages during inner ear development and organogenesis. Material and Methods: We performed a study combining immunohistochemistry and immunofluorescence using antibodies against IBA1, CX3CL1, CD168, CD68, CD45 and CollagenIV. Immune staining and quantification was performed on human embryonic inner ear sections from gestational week 09 to 17. Results: The study showed IBA1 and CD45 positive cells in the mesenchymal tissue at GW 09 to GW17. No IBA1 positive macrophages were detected in the sensory epithelium of the cochlea and vestibulum. Fractalkine (CX3CL1) signalling was initiated GW10 and parallel chemotactic attraction and migration of macrophages into the inner ear. Macrophages also migrated into the spiral ganglion, cochlear nerve, and peripheral nerve fibers and tissue-expressing CX3CL1. The mesenchymal tissue at all gestational weeks expressed CD163 and CD68. Conclusion: Expressions of markers for resident and non-resident macrophages (IBA1, CD45, CD68, and CD163) were identified in the human fetal inner ear. We speculate that these cells play a role for the development of human inner ear tissue including shaping of the gracile structures.


Assuntos
Quimiocina CX3CL1 , Orelha Interna , Quimiocina CX3CL1/metabolismo , Cóclea , Orelha Interna/metabolismo , Humanos , Macrófagos , Gânglio Espiral da Cóclea
4.
Front Surg ; 8: 662530, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136526

RESUMO

Background: The etiology of Meniere's disease (MD) and endolymphatic hydrops believed to underlie its symptoms remain unknown. One reason may be the exceptional complexity of the human inner ear, its vulnerability, and surrounding hard bone. The vestibular organ contains an endolymphatic duct system (EDS) bridging the different fluid reservoirs. It may be essential for monitoring hydraulic equilibrium, and a dysregulation may result in distension of the fluid spaces or endolymphatic hydrops. Material and Methods: We studied the EDS using high-resolution synchrotron phase contrast non-invasive imaging (SR-PCI), and micro-computed tomography (micro-CT). Ten fresh human temporal bones underwent SR-PCI. One bone underwent micro-CT after fixation and staining with Lugol's iodine solution (I2KI) to increase tissue resolution. Data were processed using volume-rendering software to create 3D reconstructions allowing orthogonal sectioning, cropping, and tissue segmentation. Results: Combined imaging techniques with segmentation and tissue modeling demonstrated the 3D anatomy of the human saccule, utricle, endolymphatic duct, and sac together with connecting pathways. The utricular duct (UD) and utriculo-endolymphatic valve (UEV or Bast's valve) were demonstrated three-dimensionally for the first time. The reunion duct was displayed with micro-CT. It may serve as a safety valve to maintain cochlear endolymph homeostasis under certain conditions. Discussion: The thin reunion duct seems to play a minor role in the exchange of endolymph between the cochlea and vestibule under normal conditions. The saccule wall appears highly flexible, which may explain occult hydrops occasionally preceding symptoms in MD on magnetic resonance imaging (MRI). The design of the UEV and connecting ducts suggests that there is a reciprocal exchange of fluid among the utricle, semicircular canals, and the EDS. Based on the anatomic framework and previous experimental data, we speculate that precipitous vestibular symptoms in MD arise from a sudden increase in endolymph pressure caused by an uncontrolled endolymphatic sac secretion. A rapid rise in UD pressure, mediated along the fairly wide UEV, may underlie the acute vertigo attack, refuting the rupture/K+-intoxication theory.

5.
Sci Rep ; 11(1): 11850, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34088924

RESUMO

The endolymphatic sac (ES) is the third part of the inner ear, along with the cochlea and vestibular apparatus. A refined sampling technique was developed to analyse the proteomics of ES endolymph. With a tailored solid phase micro-extraction probe, five ES endolymph samples were collected, and six sac tissue biopsies were obtained in patients undergoing trans-labyrinthine surgery for sporadic vestibular schwannoma. The samples were analysed using nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS) to identify the total number of proteins. Pathway identification regarding molecular function and protein class was presented. A total of 1656 non-redundant proteins were identified, with 1211 proteins detected in the ES endolymph. A total of 110 proteins were unique to the ES endolymph. The results from the study both validate a strategy for in vivo and in situ human sampling during surgery and may also form a platform for further investigations to better understand the function of this intriguing part of the inner ear.


Assuntos
Endolinfa/metabolismo , Saco Endolinfático/metabolismo , Neuroma Acústico/metabolismo , Proteoma/metabolismo , Adulto , Idoso , Animais , Biópsia , Cromatografia Líquida , Cóclea , Orelha Interna/fisiologia , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem , Vestíbulo do Labirinto , Microtomografia por Raio-X , Adulto Jovem
6.
Otol Neurotol ; 42(6): e658-e665, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34111048

RESUMO

HYPOTHESIS: Measuring the length of the basilar membrane (BM) in the cochlear hook region will result in improved accuracy of cochlear duct length (CDL) measurements. BACKGROUND: Cochlear implant pitch mapping is generally performed in a patient independent approach, which has been shown to result in place-pitch mismatches. In order to customize cochlear implant pitch maps, accurate CDL measurements must be obtained. CDL measurements generally begin at the center of the round window (RW) and ignore the basal-most portion of the BM in the hook region. Measuring the size and morphology of the BM in the hook region can improve CDL measurements and our understanding of cochlear tonotopy. METHODS: Ten cadaveric human cochleae underwent synchrotron radiation phase-contrast imaging. The length of the BM through the hook region and CDL were measured. Two different CDL measurements were obtained for each sample, with starting points at the center of the RW (CDLRW) and the basal-most tip of the BM (CDLHR). Regression analysis was performed to relate CDLRW to CDLHR. A three-dimensional polynomial model was determined to describe the average BM hook region morphology. RESULTS: The mean CDLRW value was 33.03 ±â€Š1.62 mm, and the mean CDLHR value was 34.68 ±â€Š1.72 mm. The following relationship was determined between CDLRW and CDLHR: CDLHR  = 1.06(CDLRW)-0.26 (R2  = 0.99). CONCLUSION: The length and morphology of the hook region was determined. Current measurements underestimate CDL in the hook region and can be corrected using the results herein.


Assuntos
Implante Coclear , Implantes Cocleares , Cóclea/diagnóstico por imagem , Ducto Coclear/cirurgia , Humanos , Tomografia Computadorizada por Raios X
7.
IEEE Trans Biomed Eng ; 68(12): 3602-3611, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33983877

RESUMO

OBJECTIVE: Cochlear implants are traditionally programmed to stimulate according to a generalized frequency map, where individual anatomic variability is not considered when selecting the centre frequency of stimulation of each implant electrode. However, high variability in cochlear size and spatial frequency distributions exist among individuals. Generalized cochlear implant frequency maps can result in large pitch perception errors and reduced hearing outcomes for cochlear implant recipients. The objective of this work was to develop an individualized frequency mapping technique for the human cochlea to allow for patient-specific cochlear implant stimulation. METHODS: Ten cadaveric human cochleae were scanned using synchrotron radiation phase-contrast imaging (SR-PCI) combined with computed tomography (CT). For each cochlea, ground truth angle-frequency measurements were obtained in three-dimensions using the SR-PCI CT data. Using an approach designed to minimize perceptual error in frequency estimation, an individualized frequency function was determined to relate angular depth to frequency within the cochlea. RESULTS: The individualized frequency mapping function significantly reduced pitch errors in comparison to the current gold standard generalized approach. CONCLUSION AND SIGNIFICANCE: This paper presents for the first time a cochlear frequency map which can be individualized using only the angular length of cochleae. This approach can be applied in the clinical setting and has the potential to revolutionize cochlear implant programming for patients worldwide.


Assuntos
Implante Coclear , Implantes Cocleares , Intervenção Coronária Percutânea , Cóclea/diagnóstico por imagem , Cóclea/cirurgia , Humanos , Síncrotrons
8.
Front Cell Neurosci ; 15: 642211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796009

RESUMO

Background: The human auditory nerve contains 30,000 nerve fibers (NFs) that relay complex speech information to the brain with spectacular acuity. How speech is coded and influenced by various conditions is not known. It is also uncertain whether human nerve signaling involves exclusive proteins and gene manifestations compared with that of other species. Such information is difficult to determine due to the vulnerable, "esoteric," and encapsulated human ear surrounded by the hardest bone in the body. We collected human inner ear material for nanoscale visualization combining transmission electron microscopy (TEM), super-resolution structured illumination microscopy (SR-SIM), and RNA-scope analysis for the first time. Our aim was to gain information about the molecular instruments in human auditory nerve processing and deviations, and ways to perform electric modeling of prosthetic devices. Material and Methods: Human tissue was collected during trans-cochlear procedures to remove petro-clival meningioma after ethical permission. Cochlear neurons were processed for electron microscopy, confocal microscopy (CM), SR-SIM, and high-sensitive in situ hybridization for labeling single mRNA transcripts to detect ion channel and transporter proteins associated with nerve signal initiation and conductance. Results: Transport proteins and RNA transcripts were localized at the subcellular level. Hemi-nodal proteins were identified beneath the inner hair cells (IHCs). Voltage-gated ion channels (VGICs) were expressed in the spiral ganglion (SG) and axonal initial segments (AISs). Nodes of Ranvier (NR) expressed Nav1.6 proteins, and encoding genes critical for inter-cellular coupling were disclosed. Discussion: Our results suggest that initial spike generators are located beneath the IHCs in humans. The first NRs appear at different places. Additional spike generators and transcellular communication may boost, sharpen, and synchronize afferent signals by cell clusters at different frequency bands. These instruments may be essential for the filtering of complex sounds and may be challenged by various pathological conditions.

9.
Front Neurol ; 12: 663722, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897611

RESUMO

Background: Reports vary on the incidence of vestibular dysfunction and dizziness in patients following cochlear implantation (CI). Disequilibrium may be caused by surgery at the cochlear base, leading to functional disturbances of the vestibular receptors and endolymphatic duct system (EDS) which are located nearby. Here, we analyzed the three-dimensional (3D) anatomy of this region, aiming to optimize surgical approaches to limit damage to the vestibular organ. Material and Methods: A total of 22 fresh-frozen human temporal bones underwent synchrotron radiation phase-contrast imaging (SR-PCI). One temporal bone underwent micro-computed tomography (micro-CT) after fixation and staining with Lugol's iodine solution (I2KI) to increase tissue contrast. We used volume-rendering software to create 3D reconstructions and tissue segmentation that allowed precise assessment of anatomical relationships and topography. Macerated human ears belonging to the Uppsala collection were also used. Drilling and insertion of CI electrodes was performed with metric analyses of different trajectories. Results and Conclusions: SR-PCI and micro-CT imaging demonstrated the complex 3D anatomy of the basal region of the human cochlea, vestibular apparatus, and EDS. Drilling of a cochleostomy may disturb vestibular organ function by injuring the endolymphatic space and disrupting fluid barriers. The saccule is at particular risk due to its proximity to the surgical area and may explain immediate and long-term post-operative vertigo. Round window insertion may be less traumatic to the inner ear, however it may affect the vestibular receptors.

10.
Sci Rep ; 11(1): 4437, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627724

RESUMO

The human cochlea transforms sound waves into electrical signals in the acoustic nerve fibers with high acuity. This transformation occurs via vibrating anisotropic membranes (basilar and tectorial membranes) and frequency-specific hair cell receptors. Frequency-positions can be mapped within the cochlea to create a tonotopic chart which fits an almost-exponential function with lowest frequencies positioned apically and highest frequencies positioned at the cochlear base (Bekesy 1960, Greenwood 1961). To date, models of frequency positions have been based on a two-dimensional analysis with inaccurate representations of the cochlear hook region. In the present study, the first three-dimensional frequency analysis of the cochlea using dendritic mapping to obtain accurate tonotopic maps of the human basilar membrane/organ of Corti and the spiral ganglion was performed. A novel imaging technique, synchrotron radiation phase-contrast imaging, was used and a spiral ganglion frequency function was estimated by nonlinear least squares fitting a Greenwood-like function (F = A (10ax - K)) to the data. The three-dimensional tonotopic data presented herein has large implications for validating electrode position and creating customized frequency maps for cochlear implant recipients.


Assuntos
Membrana Basilar/fisiologia , Membrana Tectorial/fisiologia , Estimulação Acústica/métodos , Implante Coclear/métodos , Implantes Cocleares , Humanos , Gânglio Espiral da Cóclea/fisiologia , Síncrotrons , Vibração
11.
J Otolaryngol Head Neck Surg ; 49(1): 2, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31907040

RESUMO

BACKGROUND: Despite significant anatomical variation amongst patients, cochlear implant frequency-mapping has traditionally followed a patient-independent approach. Basilar membrane (BM) length is required for patient-specific frequency-mapping, however cochlear duct length (CDL) measurements generally extend to the apical tip of the entire cochlea or have no clearly defined end-point. By characterizing the length between the end of the BM and the apical tip of the entire cochlea (helicotrema length), current CDL models can be corrected to obtain the appropriate BM length. Synchrotron radiation phase-contrast imaging has made this analysis possible due to the soft-tissue contrast through the entire cochlear apex. METHODS: Helicotrema linear length and helicotrema angular length measurements were performed on synchrotron radiation phase-contrast imaging data of 14 cadaveric human cochleae. On a sub-set of six samples, the CDL to the apical tip of the entire cochlea (CDLTIP) and the BM length (CDLBM) were determined. Regression analysis was performed to assess the relationship between CDLTIP and CDLBM. RESULTS: The mean helicotrema linear length and helicotrema angular length values were 1.6 ± 0.9 mm and 67.8 ± 37.9 degrees, respectively. Regression analysis revealed the following relationship between CDLTIP and CDLBM: CDLBM = 0.88(CDLTIP) + 3.71 (R2 = 0.995). CONCLUSION: This is the first known study to characterize the length of the helicotrema in the context of CDL measurements. It was determined that the distance between the end of the BM and the tip of the entire cochlea is clinically consequential. A relationship was determined that can predict the BM length of an individual patient based on their respective CDL measured to the apical tip of the cochlea.


Assuntos
Membrana Basilar/anatomia & histologia , Ducto Coclear/anatomia & histologia , Variação Anatômica , Membrana Basilar/diagnóstico por imagem , Cadáver , Ducto Coclear/diagnóstico por imagem , Implante Coclear , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Microscopia de Contraste de Fase , Síncrotrons
12.
Cell Tissue Res ; 379(3): 445-457, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31713726

RESUMO

The human endolymphatic sac (ES) is believed to regulate inner ear fluid homeostasis and to be associated with Meniere's disease (MD). We analyzed the ion transport protein sodium/potassium-ATPase (Na/K-ATPase) and its isoforms in the human ES using super-resolution structured illumination microscopy (SR-SIM). Human vestibular aqueducts were collected during trans-labyrinthine vestibular schwannoma surgery after obtaining ethical permission. Antibodies against various isoforms of Na/K-ATPase and additional solute-transporting proteins, believed to be essential for ion and fluid transport, were used for immunohistochemistry. A population of epithelial cells of the human ES strongly expressed Na/K-ATPase α1, ß1, and ß3 subunit isoforms in either the lateral/basolateral or apical plasma membrane domains. The ß1 isoform was expressed in the lateral/basolateral plasma membranes in mostly large cylindrical cells, while ß3 and α1 both were expressed with "reversed polarity" in the apical cell membrane in lower epithelial cells. The heterogeneous expression of Na/K-ATPase subunits substantiates earlier notions that the ES is a dynamic structure where epithelial cells show inverted epithelial transport. Dual absorption and secretion processes may regulate and maintain inner ear fluid homeostasis. These findings may shed new light on the etiology of endolymphatic hydrops and MD.


Assuntos
Saco Endolinfático/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Orelha Interna/anatomia & histologia , Orelha Interna/citologia , Saco Endolinfático/anatomia & histologia , Humanos , Imuno-Histoquímica , Microscopia/métodos
13.
Ear Hear ; 41(1): 173-181, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31008733

RESUMO

OBJECTIVE: To three-dimensionally reconstruct Rosenthal's canal (RC) housing the human spiral ganglion (SG) using synchrotron radiation phase-contrast imaging (SR-PCI). Straight cochlear implant electrode arrays were inserted to better comprehend the electro-cochlear interface in cochlear implantation (CI). DESIGN: SR-PCI was used to reconstruct the human cochlea with and without cadaveric CI. Twenty-eight cochleae were volume rendered, of which 12 underwent cadaveric CI with a straight electrode via the round window (RW). Data were input into the 3D Slicer software program and anatomical structures were modeled using a threshold paint tool. RESULTS: The human RC and SG were reproduced three-dimensionally with artefact-free imaging of electrode arrays. The anatomy of the SG and its relationship to the sensory organ (Corti) and soft and bony structures were assessed. CONCLUSIONS: SR-PCI and computer-based three-dimensional reconstructions demonstrated the relationships among implanted electrodes, angular insertion depths, and the SG for the first time in intact, unstained, and nondecalcified specimens. This information can be used to assess stimulation strategies and future electrode designs, as well as create place-frequency maps of the SG for optimal stimulation strategies of the human auditory nerve in CI.


Assuntos
Implante Coclear , Implantes Cocleares , Intervenção Coronária Percutânea , Cóclea/cirurgia , Eletrodos Implantados , Humanos , Gânglio Espiral da Cóclea , Síncrotrons
14.
Ups J Med Sci ; 124(3): 168-179, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31460814

RESUMO

Background: For the first time the expression of the ion transport protein sodium/potassium-ATPase and its isoforms was analyzed in the human cochlea using light- and confocal microscopy as well as super-resolution structured illumination microscopy. It may increase our understanding of its role in the propagation and processing of action potentials in the human auditory nerve and how electric nerve responses are elicited from auditory prostheses. Material and methods: Archival human cochlear sections were obtained from trans-cochlear surgeries. Antibodies against the Na/K-ATPase ß1 isoform together with α1 and α3 were used for immunohistochemistry. An algorithm was applied to assess the expression in various domains. Results: Na/K ATPase ß1 subunit was expressed, mostly combined with the α1 isoform. Neurons expressed the ß1 subunit combined with α3, while satellite glial cells expressed the α1 isoform without recognized association with ß1. Types I and II spiral ganglion neurons and efferent fibers expressed the Na/K-ATPase α3 subunit. Inner hair cells, nerve fibers underneath, and efferent and afferent fibers in the organ of Corti also expressed α1. The highest activity of Na/K-ATPase ß1 was at the inner hair cell/nerve junction and spiral prominence. Conclusion: The human auditory nerve displays distinct morphologic features represented in its molecular expression. It was found that electric signals generated via hair cells may not go uninterrupted across the spiral ganglion, but are locally processed. This may be related to particular filtering properties in the human acoustic pathway.


Assuntos
Cóclea/metabolismo , Implante Coclear/métodos , Nervo Coclear/fisiologia , Microscopia Confocal/métodos , Microscopia Eletrônica de Transmissão/métodos , ATPase Trocadora de Sódio-Potássio/metabolismo , Estimulação Acústica , Animais , Cóclea/patologia , Cóclea/ultraestrutura , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Camundongos
15.
Front Neurol ; 10: 728, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354608

RESUMO

Background: Like the brain, the human inner ear was long thought to be devoid of immune activity. Only the endolymphatic sac (ES) was known to be endowed with white blood cells that could process antigens and serve as an immunologic defense organ for the entire inner ear. Unexpectedly, the cochlear and vestibular organs, including the eighth cranial nerve, were recently shown to contain macrophages whose functions and implication in ear disease are somewhat undefined. Here, we review recent inner ear findings in man and extend the analyses to the vestibular nerve using super-resolution structured illumination microscopy (SR-SIM). Materials and Methods: Human ESs and cochleae were collected during surgery to treat patients with vestibular schwannoma and life-threatening petro-clival meningioma compressing the brainstem. The ESs and cochleae were placed in fixative, decalcified, and rapidly frozen and cryostat sectioned. Antibodies against ionized calcium-binding adaptor molecule 1-expressing cells (IBA1 cells), laminin ß2 and type IV collagen TUJ1, cytokine fractalkine (CX3CL1), toll-like receptor 4 (TLR4), CD68, CD11b, CD4, CD8, the major histocompatibility complex type II (MHCII), and the microglial marker TEME119 were used. Results: IBA1-positive cells were present in the ESs, the cochlea, central and peripheral axons of the cochlear nerve, and the vestibular nerve trunk. IBA1 cells were found in the cochlear lateral wall, spiral limbus, and spiral ganglion. Notable variants of IBA1 cells adhered to neurons with "synapse-like" specializations and cytoplasmic projections. Slender IBA1 cells occasionally protracted into the basal lamina of the Schwann cells and had intimate contact with surrounding axons. Discussion: The human eighth nerve may be under the control of a well-developed macrophage cell system. A small number of CD4+ and CD8+ cells were found in the ES and occasionally in the cochlea, mostly located in the peripheral region of Rosenthal's canal. A neuro-immunologic axis may exist in the human inner ear that could play a role in the protection of the auditory nerve. The implication of the macrophage system during disease, surgical interventions, and cell-based transplantation should be further explored.

16.
Otol Neurotol ; 40(7): e713-e722, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31135670

RESUMO

BACKGROUND: Incus necrosis is a common complication following stapes surgery and is associated with impaired microcirculation. The objective of this study was to investigate the vascular anatomy of the human incus by using light microscopy, micro-computed tomography (micro-CT), and synchrotron phase-contrast imaging (SR-PCI) for a novel three-dimensional (3D) analysis of the middle ear, mucosal folds, major vascular pathways, and intraosseous vascular bone channels. METHODS: One-hundred-and-fifty temporal bones from the Uppsala collection were analyzed under light microscopy. Twenty temporal bones underwent high-resolution micro-CT scanning, and an additional seven specimens underwent SR-PCI at the Canadian Lightsource in Saskatoon, Canada. One of these specimens was from an individual who had undergone stapes surgery. Data were processed with volume-rendering software to create 3D reconstructions using scalar opacity mapping for bone transparency, cropping, and soft tissue analyses. RESULTS: Micro-CT and SR-PCI with 3D rendering revealed the extensive vascular plexus within the un-decalcified incus bone communicating with the exterior surface. The relationship between the vessels, lenticular process, and incudostapedial joint were clearly observed. SR-PCI allowed for histologic-level detail while preserving the specimen and its 3D relationships. CONCLUSION: SR-PCI with 3D reconstructions confirmed the main vascular supply to the lenticular process along the intraosseous lenticular vessels. This is the first synchrotron analysis of a patient having undergone stapes surgery, and it suggests that incus necrosis associated with stapes surgery may be caused by a disruption of the lenticular blood flow induced by the prosthesis loop, and not by strangulation of mucosal vessels as has been previously described.


Assuntos
Bigorna/irrigação sanguínea , Bigorna/patologia , Canadá , Humanos , Imageamento Tridimensional/métodos , Bigorna/diagnóstico por imagem , Masculino , Cirurgia do Estribo/efeitos adversos , Síncrotrons , Microtomografia por Raio-X/métodos
17.
J Anat ; 234(3): 316-326, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30565214

RESUMO

A thorough knowledge of the gross and micro-anatomy of the human internal acoustic canal (IAC) is essential in vestibular schwannoma removal, cochlear implantation (CI) surgery, vestibular nerve section, and decompression procedures. Here, we analyzed the acoustic-facial cistern of the human IAC, including nerves and anastomoses using synchrotron phase contrast imaging (SR-PCI). A total of 26 fresh human temporal bones underwent SR-PCI. Data were processed using volume-rendering software to create three-dimensional (3D) reconstructions allowing soft tissue analyses, orthogonal sectioning, and cropping. A scalar opacity mapping tool was used to enhance tissue surface borders, and anatomical structures were color-labeled for improved 3D comprehension of the soft tissues. SR-PCI reproduced, for the first time, the variable 3D anatomy of the human IAC, including cranial nerve complexes, anastomoses, and arachnoid membrane invagination (acoustic-facial cistern; an extension of the cerebellopontine cistern) in unprocessed, un-decalcified specimens. An unrecognized system of arachnoid pillars and trabeculae was found to extend between the arachnoid and cranial nerves. We confirmed earlier findings that intra-meatal vestibular schwannoma may grow unseparated from adjacent nerves without duplication of the arachnoid layers. The arachnoid pillars may support and stabilize cranial nerves in the IAC and could also play a role in local fluid hydrodynamics.


Assuntos
Aracnoide-Máter/anatomia & histologia , Orelha Interna/anatomia & histologia , Imageamento Tridimensional/métodos , Osso Temporal/anatomia & histologia , Humanos , Neuroma Acústico/etiologia , Microtomografia por Raio-X/métodos
18.
Ear Hear ; 40(2): 393-400, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29952804

RESUMO

OBJECTIVES: The purpose of this study was to evaluate the three-dimensional (3D) anatomy and potential damage to the hook region of the human cochlea following various trajectories at cochlear implantation (CI). The goal was to determine which of the approaches can avoid lesions to the soft tissues, including the basilar membrane and its suspension to the lateral wall. Currently, there is increased emphasis on conservation of inner ear structures, even in nonhearing preservation CI surgery. DESIGN: Micro-computed tomography and various CI approaches were made in an archival collection of macerated and freshly fixed human temporal bones. Furthermore, synchrotron radiation phase-contrast imaging was used to reproduce the soft tissues. The 3D anatomy was investigated using bony and soft tissue algorithms, and influences on inner ear structures were examined. RESULTS: Micro-computed tomography with 3D rendering demonstrated the topography of the round window (RW) and osseous spiral laminae, while synchrotron imaging allowed reproduction of soft tissues such as the basilar membrane and its suspension around the RW membrane. Anterior cochleostomies and anteroinferior cochleostomies invariably damaged the intracochlear soft tissues while inferior cochleostomies sporadically left inner ear structures unaffected. CONCLUSIONS: Results suggest that cochleostomy approaches often traumatize the soft tissues at the hook region at CI surgery. For optimal structural preservation, the RW approach is, therefore, recommended.


Assuntos
Membrana Basilar/diagnóstico por imagem , Implante Coclear , Janela da Cóclea/diagnóstico por imagem , Membrana Basilar/patologia , Cadáver , Cóclea/diagnóstico por imagem , Cóclea/patologia , Implantes Cocleares , Humanos , Imageamento Tridimensional , Microscopia de Contraste de Fase , Janela da Cóclea/patologia , Síncrotrons , Microtomografia por Raio-X
19.
Ups J Med Sci ; 123(3): 131-142, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30204028

RESUMO

BACKGROUND: The Uppsala collection of human temporal bones and molds is a unique resource for education and international research collaboration. Micro-computerized tomography (micro-CT) and synchrotron imaging are used to investigate the complex anatomy of the inner ear. Impaired microcirculation is etiologically linked to various inner ear disorders, and recent developments in inner ear surgery promote examination of the vascular system. Here, for the first time, we present three-dimensional (3D) data from investigations of the major vascular pathways and corresponding bone channels. METHODS: We used the archival Uppsala collection of temporal bones and molds consisting of 324 inner ear casts and 113 macerated temporal bones. Micro-CT was used to investigate vascular bone channels, and 26 fresh human temporal bones underwent synchrotron radiation phase contrast imaging (SR-PCI). Data were processed by volume-rendering software to create 3D reconstructions allowing orthogonal sectioning, cropping, and soft tissue analyses. RESULTS: Micro-CT with 3D rendering was superior in reproducing the anatomy of the vascular bone channels, while SR-PCI replicated soft tissues. Arterial bone channels were traced from scala vestibuli (SV) arterioles to the fundus, cochlea, and vestibular apparatus. Drainage routes along the aqueducts were examined. CONCLUSION: Human inner ear vessels are difficult to study due to the adjoining hard bone. Micro-CT and SR-PCI with 3D reconstructions revealed large portions of the micro-vascular system in un-decalcified specimens. The results increase our understanding of the organization of the vascular system in humans and how altered microcirculation may relate to inner ear disorders. The findings may also have surgical implications.


Assuntos
Orelha Interna/irrigação sanguínea , Osso Temporal/anatomia & histologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Microscopia de Contraste de Fase , Modelos Anatômicos , Software , Síncrotrons , Osso Temporal/diagnóstico por imagem , Microtomografia por Raio-X
20.
PLoS One ; 13(6): e0198442, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856847

RESUMO

BACKGROUND: Due to the surrounding bone, the human inner ear is relatively inaccessible and difficult to reach for cellular and molecular analyses. However, these types of investigations are needed to better understand the etiology, pathophysiology and progression of several inner ear disorders. Moreover, the fluid from the inner ear cannot be sampled for micro-chemical analyses from healthy individuals in vivo. Therefore, in the present paper, we studied patients with vestibular schwannoma (VS) undergoing trans-labyrinthine surgery (TLS). Our primary aim was to identify perilymph proteins in patients with VS on an individual level. Our second aim was to investigate the proteins identified at a functional level and our final aim was to search for biological markers for tumor-associated hearing loss and tumor diameter. METHODS AND FINDINGS: Sixteen patients underwent TLS for sporadic VS. Perilymph was aspirated through the round window before opening the labyrinth. One sample was contaminated and excluded resulting in 15 usable samples. Perilymph samples were analyzed with an online tandem LTQ-Orbitrap mass spectrometer. Data were analyzed with MaxQuant software to identify the total number of proteins and to quantify proteins in individual samples. Protein function was analyzed using the PANTHER Overrepresentation tool. Associations between perilymph protein content, clinical parameters, tumor-associated hearing loss and tumor diameter were assessed using Random Forest and Boruta. In total, 314 proteins were identified; 60 in all 15 patients and 130 proteins only once in 15 patients. Ninety-one proteins were detected in at least 12 out of 15 patients. Random Forest followed by Boruta analysis confirmed that alpha-2-HS-glycoprotein (P02765) was an independent variable for tumor-associated hearing loss. In addition, functional analysis showed that numerous processes were significantly increased in the perilymph. The top three enriched biological processes were: 1) secondary metabolic processes; 2) complement activation and 3) cell recognition. CONCLUSIONS: The proteome of perilymph in patients with vestibular schwannoma has an inter-individual stable section. However, even in a cohort with homogenous disease, the variation between individuals represented the majority of the detected proteins. Alpha-2-HS-glycoprotein, P02765, was shown to be an independent variable for tumor-associated hearing loss, a finding that needs to be verified in other studies. In pathway analysis perilymph had highly enriched functions, particularly in terms of increased immune and metabolic processes.


Assuntos
Biomarcadores/metabolismo , Perda Auditiva/diagnóstico , Neurilemoma/patologia , Perilinfa/metabolismo , Proteoma/metabolismo , Cromatografia Líquida de Alta Pressão , Feminino , Perda Auditiva/complicações , Perda Auditiva/metabolismo , Humanos , Modelos Lineares , Masculino , Neurilemoma/complicações , Neurilemoma/metabolismo , Proteoma/análise , Espectrometria de Massas em Tandem , alfa-2-Glicoproteína-HS/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA