Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 190(5): 2311-9, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23345332

RESUMO

The innate immune system is important for control of infections, including herpesvirus infections. Intracellular DNA potently stimulates antiviral IFN responses. It is known that plasmacytoid dendritic cells sense herpesvirus DNA in endosomes via TLR9 and that nonimmune tissue cells can sense herpesvirus DNA in the nucleus. However, it remains unknown how and where myeloid cells, such as macrophages and conventional dendritic cells, detect infections with herpesviruses. In this study, we demonstrate that the HSV-1 capsid was ubiquitinated in the cytosol and degraded by the proteasome, hence releasing genomic DNA into the cytoplasm for detection by DNA sensors. In this context, the DNA sensor IFN-γ-inducible 16 is important for induction of IFN-ß in human macrophages postinfection with HSV-1 and CMV. Viral DNA localized to the same cytoplasmic regions as did IFN-γ-inducible 16, with DNA sensing being independent of viral nuclear entry. Thus, proteasomal degradation of herpesvirus capsids releases DNA to the cytoplasm for recognition by DNA sensors.


Assuntos
Capsídeo/metabolismo , Citomegalovirus/metabolismo , DNA Viral/genética , Herpesvirus Humano 1/metabolismo , Macrófagos/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Chlorocebus aethiops , Citomegalovirus/genética , Citosol/metabolismo , DNA Viral/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Inativação Gênica , Herpesvirus Humano 1/genética , Humanos , Interferon beta/biossíntese , Interferon beta/imunologia , Macrófagos/virologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/imunologia , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/imunologia , RNA Interferente Pequeno/genética , Ubiquitinação , Células Vero
2.
Nat Immunol ; 13(8): 737-43, 2012 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-22706339

RESUMO

The innate immune system senses infection by detecting either evolutionarily conserved molecules essential for the survival of microbes or the abnormal location of molecules. Here we demonstrate the existence of a previously unknown innate detection mechanism induced by fusion between viral envelopes and target cells. Virus-cell fusion specifically stimulated a type I interferon response with expression of interferon-stimulated genes, in vivo recruitment of leukocytes and potentiation of signaling via Toll-like receptor 7 (TLR7) and TLR9. The fusion-dependent response was dependent on the stimulator of interferon genes STING but was independent of DNA, RNA and viral capsid. We suggest that membrane fusion is sensed as a danger signal with potential implications for defense against enveloped viruses and various conditions of giant-cell formation.


Assuntos
Fusão Celular , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/fisiologia , Imunidade Inata , Interferon Tipo I/biossíntese , Fusão de Membrana , Proteínas de Membrana/metabolismo , Animais , Quimiocina CXCL10/metabolismo , Células HEK293 , Células HeLa , Humanos , Leucócitos/imunologia , Leucócitos/metabolismo , Ativação Linfocitária , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Internalização do Vírus
3.
J Immunol ; 187(10): 5268-76, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21998456

RESUMO

Autophagy has been established as a player in host defense against viruses. The mechanisms by which the host induces autophagy during infection are diverse. In the case of HSV type 1 (HSV-1), dsRNA-dependent protein kinase is essential for induction of autophagy in fibroblasts through phosphorylation of eukaryotic initiation factor 2α (eIF2α). HSV-1 counteracts autophagy via ICP34.5, which dephosphorylates eIF2α and inhibits Beclin 1. Investigation of autophagy during HSV-1 infection has largely been conducted in permissive cells, but recent work suggests the existence of a eIF2α-independent autophagy-inducing pathway in nonpermissive cells. To clarify and further characterize the existence of a novel autophagy-inducing pathway in nonpermissive cells, we examined different HSV and cellular components in murine myeloid cells for their role in autophagy. We demonstrate that HSV-1-induced autophagy does not correlate with phosphorylation of eIF2α, is independent of functional dsRNA-dependent protein kinase, and is not antagonized by ICP34.5. Autophagy was activated independent of viral gene expression, but required viral entry. Importantly, we found that the presence of genomic DNA in the virion was essential for induction of autophagy and, conversely, that transfection of HSV-derived DNA induced microtubule-associated protein 1 L chain II formation, a marker of autophagy. This occurred through a mechanism dependent on stimulator of IFN genes, an essential component for the IFN response to intracellular DNA. Finally, we observed that HSV-1 DNA was present in the cytosol devoid of capsid material following HSV-1 infection of dendritic cells. Thus, our data suggest that HSV-1 genomic DNA induces autophagy in nonpermissive cells in a stimulator of IFN gene-dependent manner.


Assuntos
Autofagia/imunologia , Citosol/virologia , DNA Viral , Herpesvirus Humano 1/imunologia , Proteínas de Membrana/fisiologia , Células Mieloides/imunologia , Células Mieloides/virologia , Animais , Autofagia/genética , Células da Medula Óssea/imunologia , Células da Medula Óssea/virologia , Linhagem Celular , Citosol/imunologia , DNA Viral/genética , Células Dendríticas/imunologia , Células Dendríticas/virologia , Feminino , Proteínas de Membrana/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Células Mieloides/citologia
4.
J Gen Virol ; 90(Pt 1): 74-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19088275

RESUMO

The innate antiviral response is initiated by pattern recognition receptors, which recognize viral pathogen-associated molecular patterns. Here we show that retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) in cooperation with Toll-like receptor (TLR) 9 is required for expression of type I interferons (IFNs) after infection with herpes simplex virus (HSV). Our work also identified RNase L as a critical component in IFN induction. Moreover, we found that TLR9 and RLRs activate distinct, as well as overlapping, intracellular signalling pathways. Thus, RLRs are important for recognition of HSV infection, and cooperate with the Toll pathway to induce an antiviral response.


Assuntos
RNA Helicases DEAD-box/imunologia , Interferon Tipo I/biossíntese , Simplexvirus/imunologia , Receptor Toll-Like 9/imunologia , Animais , Células Cultivadas , Proteína DEAD-box 58 , Endorribonucleases/imunologia , Fibroblastos/virologia , Camundongos
5.
J Virol ; 81(24): 13315-24, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17913820

RESUMO

Recognition of viruses by germ line-encoded pattern recognition receptors of the innate immune system is essential for rapid production of type I interferon (IFN) and early antiviral defense. We investigated the mechanisms of viral recognition governing production of type I IFN during herpes simplex virus (HSV) infection. We show that early production of IFN in vivo is mediated through Toll-like receptor 9 (TLR9) and plasmacytoid dendritic cells, whereas the subsequent alpha/beta IFN (IFN-alpha/beta) response is derived from several cell types and induced independently of TLR9. In conventional DCs, the IFN response occurred independently of viral replication but was dependent on viral entry. Moreover, using a HSV-1 UL15 mutant, which fails to package viral DNA into the virion, we found that entry-dependent IFN induction also required the presence of viral genomic DNA. In macrophages and fibroblasts, where the virus was able to replicate, HSV-induced IFN-alpha/beta production was dependent on both viral entry and replication, and ablated in cells unable to signal through the mitochondrial antiviral signaling protein pathway. Thus, during an HSV infection in vivo, multiple mechanisms of pathogen recognition are active, which operate in cell-type- and time-dependent manners to trigger expression of type I IFN and coordinate the antiviral response.


Assuntos
Antivirais/metabolismo , Regulação da Expressão Gênica , Herpes Simples/imunologia , Herpesvirus Humano 1/patogenicidade , Herpesvirus Humano 2/patogenicidade , Interferon Tipo I/biossíntese , Receptor Toll-Like 9/metabolismo , Animais , Antivirais/imunologia , Células Cultivadas , Chlorocebus aethiops , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Feminino , Fibroblastos/citologia , Fibroblastos/imunologia , Fibroblastos/virologia , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/metabolismo , Interferon Tipo I/imunologia , Interferon-alfa/biossíntese , Interferon beta/biossíntese , Células L , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Coelhos , Baço/citologia , Baço/imunologia , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética , Células Vero , Replicação Viral
6.
J Virol ; 79(20): 12944-51, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16188996

RESUMO

Recognition of pathogens by the innate immune system is mediated by pattern recognition receptors (PRRs), which recognize specific molecular structures of the infectious agents and subsequently trigger expression of genes involved in host defense. Toll-like receptors (TLRs) represent a well-characterized class of membrane-bound PRRs, and the RNA helicase retinoic acid inducible gene I (RIG-I) has recently been described as a novel cytoplasmic PRR recognizing double-stranded RNA (dsRNA). Here we show that activation of signal transduction and induction of cytokine expression by the paramyxovirus Sendai virus is dependent on virus replication and involves PRRs in a cell-type-dependent manner. While nonimmune cells relied entirely on recognition of dsRNA through RIG-I for activation of an antiviral response, myeloid cells utilized both the single-stranded RNA sensing TLR7 and TLR8 and dsRNA-dependent mechanisms independent of RIG-I, TLR3, and dsRNA-activated protein kinase R to trigger this response. Therefore, there appears to be a large degree of cell-type specificity in the mechanisms used by the host to recognize infecting viruses.


Assuntos
Glicoproteínas de Membrana/farmacologia , Glicoproteínas de Membrana/fisiologia , RNA Helicases/fisiologia , Receptores de Superfície Celular/fisiologia , Infecções por Respirovirus/imunologia , Vírus Sendai/imunologia , Animais , Linhagem Celular , Citocinas/biossíntese , Proteína DEAD-box 58 , RNA Helicases DEAD-box , Humanos , Imunidade Inata , Glicoproteínas de Membrana/metabolismo , Camundongos , RNA Helicases/metabolismo , Receptores de Superfície Celular/metabolismo , Vírus Sendai/fisiologia , Transdução de Sinais , Especificidade da Espécie , Receptor 3 Toll-Like , Receptor 7 Toll-Like , Receptor 8 Toll-Like , Receptores Toll-Like , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA